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Abstract

We analyze the asymptotic conditional validity of modal for-
mulas, i.e., the probability that a formula ψ is valid in the
finite Kripke structures in which a given modal formula ϕ
is valid, when the size of these Kripke structures grows to
infinity. We characterize the formulas ψ that are almost
surely valid (i.e., with probability 1) in case ϕ is a flat, S5-
consistent formula, and show that these formulas ψ are ex-
actly those which follow from ϕ according to the nonmono-
tonic modal logic S5G. Our results provide – for the first
time – a probabilistic semantics to a well-known nonmono-
tonic modal logic, establishing a new bridge between non-
monotonic and probabilistic reasoning, and give a computa-
tional account of the asymptotic conditional validity problem
in Kripke structures.

1 Introduction
Asymptotic Probabilities in Modal Logic. Asymptotic
(or limit) probabilities of classical logic formulas have been
investigated in various contexts (Glebskii et al. 1969;
Fagin 1976; Compton 1988; Kolaitis and Vardi 1990; Bars
1998). Halpern and Kapron have analyzed asymptotic prob-
ability in modal logic (Halpern and Kapron 1994), where,
instead of relational structures, Kripke structures are con-
sidered, and where the size of a structure is measured in
terms of the number of its worlds. Among various re-
sults, 1 they have shown that every modal formula is either
almost surely true or almost surely false in finite Kripke
structures. Thus, there is a 0-1 law for modal logic K,
analogous to the 0-1 law for function-free first-order logic
(Fagin 1976; Glebskii et al. 1969).

To give a simple example, if p is a propositional letter
of a considered finite alphabet A, then the modal formula2

Mp is almost surely true (w.r.t. modal logic K). In fact, it
can be seen that if n→∞, then the cardinality of the set

Copyright c© 2007, authors listed above. All rights reserved.
1Some of the results of (Halpern and Kapron 1994) have been

corrected in (Bars 2002), but those referred-to in the present paper
are perfectly correct in (Halpern and Kapron 1994).

2We here use K as the symbol for the necessity (= knowledge)
operator and M (≡ ¬K¬) for the possibility operator.

An of Kripke structures for A of size ≤ n satisfying Mp
(i.e., where at least one world satisfying p is reachable from
each world) grows much faster than the cardinality of the set
Bn of Kripke structures which do not satisfy Mp, and thus
limn→∞ |An|/|Cn| = 1 where Cn is the set of all Kripke
structures with n worlds over the considered alphabet.

Assigning asymptotic probabilities to modal formulas
provides an interesting nonstandard semantics to modal log-
ics and has important connections to philosophy and to arti-
ficial intelligence:
PHILOSOPHY: It has been observed (Halpern and Kapron
1994; Gottlob 1999) that the modal formulas that are almost
surely true in all Kripke models are exactly those formulas
which are valid in Carnap’s modal logic, exposed in his well-
known foundational treatise Meaning and Necessity (Carnap
1947). Carnap argued that precisely these formulas are those
to be considered logically true (L-true). The same logic has
since be considered by various philosophers and logicians
(Gottlob 1999).
ARTIFICIAL INTELLIGENCE: Various nonmonotonic
modal logics have been defined in the literature. Examples
are autoepistemic logic (Moore 1985), nonmonotonic logics
K, S4, etc. (Marek and Truszczyński 1993), the logic MBNF
(Lifschitz 1994) and the logic of minimal knowledge S5G

(Halpern and Moses 1985). In these logics, the modal oper-
ator K is interpreted as an epistemic operator of knowledge
or of belief. As observed in (Gottlob 1999), the formulas
that can be derived from an empty set of premises in all
these logics precisely coincide with those formulas which
are almost surely true in all Kripke structures. This set of
formulas is furthermore identical to the stable set (Stalnaker
1993) based on the empty set of formulas, thus, in a sense,
to the “absolute” stable set, containing only those formulas
that are epistemic consequences of the empty theory, i.e.,
that can be assumed in the case of total factual ignorance
(for a definition of stable sets, see Section 4). We thus re-
tain that in nonmonotonic and epistemic logics, in absence
of further knowledge, a modal formula is considered true if
and only if this formula is almost surely valid.

Reasoning and Asymptotic Conditional Truth. While
almost sure validity provides an appealing probabilistic se-
mantics of truth in the case of total factual ignorance, this
does not yet allow us to reason on the basis of premises,



which is the the most important goal of all logical for-
malisms, and, in particular, of nonmonotonic and epistemic
logics. In the setting of limit probabilities, the inference
ϕ |= ψ of a (possibly modal) formula ψ from a knowl-
edge base (theory) ϕ would most intuitively correspond to
the statement that the conditional probability P (ψ |ϕ) is
asymptotically equal to 1. Assuming a uniform probabil-
ity distribution of Kripke structures, this means that for the
sets An and Bn of Kripke models of size n satisfying ψ ∧ϕ
and ϕ, respectively, the limit limn→∞ |An|/|Bn| exists and
is equal to 1.

There is, in general, no 0-1 law for conditional probabil-
ities in our setting, which immediately follows from pre-
vious results (see e.g. (Grove et al. 1996b)) and from the
fact that modal logic corresponds to a fragment of function-
free first-order logic. The existence and determination of
conditional probabilities in first and higher order logics has
been the subject of several studies (Grove et al. 1996b;
1996a). However, to our best knowledge, conditional prob-
abilities for modal logics have never been studied.

Observe that reasoning via conditional limit probabilities
as explained above clearly constitutes a form of nonmono-
tonic reasoning. For example, if p is a propositional letter,
then |=lim Mp but K¬p 6|=lim Mp, thus, adding a premise
may invalidate a consequence (here |=lim denotes inference
of almost sure formulas under conditional limit probabili-
ties). The nonmonotonic behaviour of conditional inference
has been pointed out in the context of FO and higher order
classical logic (see e.g. (Grove et al. 1996b)). We deem
the context of modal logic particularly interesting, because
most nonmonotonic logics that have been defined are modal
logics. It would thus be very interesting to know how the
nonmonotonic modal logic obtained from conditional limit
probabilities of Kripke structures relates to well-known and
well-studied nonmonotonic modal logics.

Nonmonotonic Modal Logics. For every “classical”
monotonic system of modal logic S, a nonmonotonic ver-
sion NM-S is obtained by the following definition: A set E
of modal formulas is an NM-S-expansion of a knowledge
base ϕ iff E = CnS(ϕ ∪ {¬Kγ|γ ∈ LK(A)−E}), where
CnS is the consequence operator according to modal logic
S and LK(A) is the underlying modal language, i.e., the set
of all possible modal formulas over the alphabet of proposi-
tions A3. In particular, Moore’s autoepistemic logic corre-
sponds to NM-KD45. For more background, consult (Marek
and Truszczyński 1993).

It was often criticized that the above fixed-point equa-
tion is somewhat too liberal, because it allows a theory
to have expansions that are not sufficiently “grounded” in
the premises and contain positive knowledge that a rational
agent should never conclude from the premises. For this rea-
son, ground nonmonotonic modal logics have been defined
by restricting the introspection of the agent to non-modal
sentences. The notion of groundedness has a rather intuitive

3This definition is applicable to a large range of modal log-
ics, but a collapse happens at S5 because NM-S5=S5 (Marek and
Truszczyński 1993).

motivation: in fact, it corresponds to discarding any reason-
ing based on epistemic assumptions, which, for example,
would enable the agent to conclude that something is true in
the world, by assuming to know it. The fixed-point equation
defining a SG-expansion of ϕ is: E = CnS(ϕ ∪ {¬Kγ |
γ ∈ L(A) − E}), where L(A) denotes the set of all ob-
jective (i.e., non-modal) formulas of the underlying propo-
sitional language. According to this equation, we can asso-
ciate a logic SG to each modal logic S. Given ϕ ∈ LK(A),
ψ ∈ LK(A), we say that ψ is entailed by ϕ in SG (and write
ϕ |=SG

ψ) iff ψ belongs to all SG-expansions for ϕ.
Among all ground nonmonotonic logics, the logic S5G

(which, unlike NM-S5, is a true nonmonotonic logic) has
received considerable attention in the literature and is gener-
ally referred to as the logic of minimal knowledge (Halpern
and Moses 1985) (or the logic of maximal ignorance). In
fact, independently from its fixed-point characterization,
S5G was characterized on a semantic basis, by means of a
preference criterion among the models of an agent’s knowl-
edge selecting just those models in which objective knowl-
edge (i.e, the set of formulas of type Kϕ such that ϕ ∈
L(A)) is minimal (Halpern and Moses 1985; Shoham 1987;
Lifschitz 1994). As shown in (Shoham 1987), S5G has a
simple, elegant model theory: The S5G models of a theory
T are precisely those Kripke structures which are univer-
sal (i.e., totally connected) and are maximal set of worlds
(w.r.t. set-containment). For details on ground nonmono-
tonic modal logics and S5G, see (Halpern and Moses 1985;
Lifschitz 1994; Donini et al. 1997).

Main Problems Studied. The investigations reported in
this paper were motivated by the following questions:

1. Given a formula ϕ, which formulas ψ are almost surely
true in the Kripke models of ϕ, i.e., how can we charac-
terize the formulas ψ that are true with limit probability
one in the Kripke models of ϕ, when the size of these
Kripke models grows towards infinity?

2. Given that modal inference under almost sure valid-
ity constitutes a form of nonmonotonic reasoning, to
which of the nonmonotonic modal logics from the above-
mentioned plethora of logics does this form of reasoning
best correspond?

3. Can we characterize the set of formulas ϕ that guarantee
a 0-1 law for the asymptotic probability P (ψ|ϕ) for arbi-
trary modal formulas ψ?

4. What is the complexity of modal reasoning based on
asymptotic conditional probabilities?

For studying these questions, we make a very weak as-
sumption on ϕ, which assures that ϕ does not contradict
some principles of knowledge: we assume that ϕ is S5-
consistent, i.e., we assume that ϕ is consistent with the ax-
ioms of (monotonic) S5, which means that ϕ admits at least
one S5-model. This assumption is indeed very weak. It
does neither mean that ϕ contains the S5 axioms, or that
these axioms should follow from ϕ, nor that ϕ has to be
interpreted under S5 Kripke structures only. Our assump-
tion merely requires that formulas such asKp∧K¬p which
bluntly contradict some axioms of (monotonic) S5 cannot



be deduced from ϕ. If ϕ satisfies this requirement, we say
that ϕ is knowledge-consistent. We make this assumption
because knowledge-inconsistent theories are well-known to
be inconsistent for all currently known nonmonotonic modal
logics anyway, i.e., in each such nonmonotonic logic, a
knowledge-inconsistent formula ϕ entails a contradiction
and thus all formulas of the modal language LK(A). In par-
ticular, with regard to our goal of comparing asymptotic con-
ditional reasoning to nonmonotonic modal logics, there is no
point to consider knowledge-inconsistent modal premises.
Moreover, we characterize asymptotic conditional reason-
ing when the premise is a flat modal formula, i.e., a formula
without nested occurrences of the modal operator. The flat
fragment of a modal logic of knowledge is certainly a very
important (if not the most important) syntactically restricted
fragment. It consists of the Boolean closure of knowledge
bases, i.e., of objective theories under the K operator. In
particular, the flat fragment in S5G is extremely powerful
and expressive. As shown in (Rosati 1998), via appropri-
ate translations, this fragment captures the well-known for-
malisms of default logic and logic programming under the
stable model semantics. In the present paper we limit our
attention to this flat fragment. However, we think that (by
slightly more involved methods) our results carry over to the
fully nested fragment (i.e., the fragment with nesting depth
greater than 1).

Results. By first answering the second of the above-stated
research questions, we show the following main result:
Answer to Question 2: ϕ almost surely entails ψ iff ψ is
entailed by ϕ in S5G.

This result gives a fresh probabilistic semantics to the
well-known nonmonotonic modal logic S5G, providing a
new justification for S5G based on probabilistic rationality.
At the same time, it provides the answers to our questions 1
and 4, too. In fact, as already mentioned, reasoning in S5G

has precise characterizations in terms of model-theory and
complexity, hence the same characterizations now apply to
asymptotic conditional reasoning over Kripke models:
Answer to Question 1: ϕ almost surely entails ψ iff ψ is
satisfied by all Kripke models of ϕ that are universal and
have a maximal set of worlds.
Answer to Question 4: Deciding whether ϕ almost surely
entails ψ is Πp

2-complete.4

A theory is honest (Halpern and Moses 1985) iff it has
exactly one S5G-model. It has been argued that the epistemic
state of a perfectly rational agent is necessarily honest, e.g.,
it could not be of the form (KT1) ∨ (KT2) where T1 and
T2 are theories that contradict each other. Honest premises
drastically simplify asymptotic conditional reasoning:
Answer to Question 3: The class of knowledge-consistent
premises ϕ that imply a 0-1 law is exactly the class of honest
formulas. In other words, the honest formulas are precisely

4Πp
2 is the complement of Σp

2=NPNP; Θp
2 is the class of prob-

lems solved in PTIME by a logarithmic number of calls to an NP-
oracle.

the formulas ϕ such that, for all ψ, the asymptotic probabil-
ity that ψ holds in the structures in which ϕ is valid is either
0 or 1. Moreover, asymptotic conditional reasoning based
on honest theories is only Θp

2-complete.
Due to space limitations, we can only include the sketches

of some results in the present version of the paper.

2 Preliminaries
We assume familiarity with modal logics K and S5. We deal
with a propositional alphabet A such that either A is finite
and fixed, i.e., it is the same for every problem instance, or
A is not bounded, but each problem instance comes along
with a finite alphabet A as part of the input. We denote by
L(A) the set of propositional (or objective) formulas over
A, denote by LK(A) the set of modal formulas over A, and
denote by LFK(A) the set of flat modal formulas, i.e., the
subset of LK(A) of formulas over A satisfying the follow-
ing abstract syntax:

ϕ ::= Kf | ¬ϕ | ϕ1 ∧ ϕ2, where f ∈ L(A)
We also use the symbol true to denote the formula a ∨ ¬a,
and the symbol false to denote the formula a ∧ ¬a.

We now recall some auxiliary definitions that we will use
in the following sections (Marek and Truszczyński 1993;
Donini et al. 1997). Given ϕ ∈ LK(A), we denote by
MA(ϕ) the set of modal atoms from ϕ, i.e., the set of sub-
formulas of the form Kψ occurring in ϕ. In the following,
we say that an occurrence of a modal atom Kψ in a formula
ϕ ∈ LK(A) is strict if it does not lie within the scope of a
modal operator.

Given a partition (P,N) of the set MA(ϕ) and a formula
ψ ∈ LK(A), we denote by ψ(P,N) the formula obtained
from ψ by substituting each strict occurrence in ψ of a modal
atom in P with true, and each strict occurrence in ψ of a
modal atom in N with false. Notice that, if P ∪N contains
MA(ψ), then ψ(P,N) is a propositional formula.

Let ϕ ∈ LK(A) and let (P,N) be a partition of
MA(ϕ). We denote by objϕ(P,N) the propositional for-
mula objϕ(P,N) = ϕ(P,N) ∧

∧
Kψ∈P ψ(P,N).

Given a partition (P,N) of the set MA(ϕ), we say that
(P,N) is S5-consistent with ϕ if (P,N) satisfies the follow-
ing conditions: (1) the propositional formula objϕ(P,N)
is satisfiable; (2) for each Kψ ∈ N , the propositional for-
mula objϕ(P,N)∧¬ψ(P,N) is satisfiable. It is immediate
to see that there exists a partition of MA(ϕ) S5-consistent
with ϕ iff ϕ is knowledge-consistent, i.e., there exists an S5-
structure S such that (w,S) |= Kϕ where w is a world of
S. Finally, given a structure S = 〈W,R, V 〉 and a world
w ∈ W , we say that (P,N) is the partition of MA(ϕ) satis-
fied by (w,S) if, for each Kψ ∈ MA(ϕ), (w,S) |= Kψ iff
Kψ ∈ P .

3 Strong almost-sure conditional validity
In the work of Halpern and Kapron (Halpern and Kapron
1994), almost sure structure validity is studied by consider-
ing all possible Kripke structures equally likely, i.e., uni-
formly distributed. This amounts to assume that that ev-
ery propositional variable is true with probability 1/2 in a
randomly chosen world. Under such an assumption, the



asymptotic probability of ϕ w.r.t. a propositional alphabet
A corresponds to the limit limn→∞ |Wϕ

n |/|Wn|, where: (i)
Wn denotes the set of all n-structures over A, i.e., the
structures with n worlds of the form 〈W,R, V 〉, where
W = {1, . . . , n}, the accessibility relation R is a binary
relation over W , and V is a function mapping each world
into a propositional interpretation over A; (ii) Wϕ

n denotes
the set of all n-structures in which ϕ holds; (iii) |S| rep-
resents the cardinality of a set S. Moreover, under the
above uniform probability assumption, asymptotic condi-
tional probability of ψ given ϕ corresponds to the limit
limn→∞ |W(ϕ∧ψ)

n |/|Wϕ
n |.

It would be more appealing to consider the notion of
strong almost sure validity, where the asymptotic probabil-
ity of a formula ψ is required to be equal to 1 for every pos-
sible probability distribution assigning rational truth prob-
abilities to the propositional variables. It turns out that in
the context of (Halpern and Kapron 1994) both concepts are
equivalent, thus all relevant results of (Halpern and Kapron
1994) extend to strong almost sure validity. In the context
of conditional probabilities, these concepts differ, however.
In this paper we choose to characterize the notion of strong
almost sure conditional validity, which is independent of a
particular fixed probability distribution. However, we will
use (Section 4) the concept of almost sure conditional valid-
ity (i.e., the one corresponding to the uniform distribution of
Kripke structures) as a tool for establishing (Section 5) our
main result on strong almost sure validity.

More formally, we associate to each propositional atom
a ∈ A a rational probability m such that 0 < m < 1, which
is interpreted as the probability that the proposition a is true.
Such an assignment is part of the input. Assignments giv-
ing probability 1 (resp. 0) to a are not considered, since in
such cases the proposition a is certainly true (resp. false)
and all its occurrences in a formula can be eliminated in a
simple way. We assume without loss of generality that m
is a finite sum of the negative powers of two. Hence, we
say that P is a probability assignment over an alphabet A if
P is a function mapping each propositional symbol from A
to a rational number m such that there exists a finite binary
sequence m1 . . .mp such that m =

∑p
i=1

mi

2i .
It is immediate to verify the following relationship be-

tween the cardinality of a set of interpetations and the num-
ber of different n-structures defined over such interpreta-
tions.5

Lemma 3.1 Let I be a set of propositional interpretations,
and let Wn be the set of n-structures defined using the set of
interpretations I. Then, |Wn| = |I|n · 2n2

.

Let ϕ,ψ ∈ LK(A), and let P be a probability assignment
over A. Then, pnP(ψ|ϕ) denotes the probability that ψ is
valid in the n-structures in which ϕ is valid, under the proba-
bility assignmentP . We are now ready to define almost-sure
and strong almost-sure conditional validity.

Definition 3.2 (P-almost-sure validity) Let P be a prob-
ability assignment over A. We say that ψ conditioned by

5We adopt the well-known random worlds method (Grove et al.
1996b; 1996a).

ϕ is P-almost-surely valid if limn→∞ pn
P(ψ|ϕ) = 1, i.e.,

the asymptotic probability that ψ conditioned by ϕ is valid
is 1 under the probability assignment P . Conversely, if
limn→∞ pn

P(ψ|ϕ) < 1, then we say that ψ conditioned
by ϕ is not P-almost-surely valid.

Definition 3.3 (strong-almost-sure validity) ψ conditioned
by ϕ is strongly almost-surely valid if limn→∞ pn

P(ψ|ϕ) =
1 for each probability assignment P over A. Conversely,
if there exists a probability assignment P over A such that
limn→∞ pn

P(ψ|ϕ) < 1, then we say that ψ conditioned by
ϕ is not strongly almost-surely valid.

We denote by SAS(ϕ,A) the set of formulas ψ from LK(A)
such that ψ conditioned by ϕ is strongly almost-surely valid.

4 Counting structures
In this section we prove the correspondence between the no-
tion of stable set in nonmonotonic modal logics and strong
almost-sure conditional validity with respect to objective
formulas, and establish a first correspondence between S5G

and strong almost-sure conditional validity in modal logic.
From now on, we denote by h the number of proposi-

tional interpretations of A, i.e., h = 2|A|. Moreover, given
a formula f ∈ L(A), we denote by hf the number of inter-
pretations of A satisfying f .

We start our analysis by studying the properties of the set
of n-structures for f , i.e., the n-structures in which a propo-
sitional formula f is valid. First of all, from Lemma 3.1, it
follows that the number of n-structures for f is hf · 2n

2
.

Then, we recall the definition of stable set of modal for-
mulas. Let f be a satisfiable propositional formula over the
propositional alphabet A. The stable set of f in A (de-
noted by Stable(f,A)) is the unique set of modal formu-
las T ⊂ LK(A) that satisfies the following conditions: (i)
for each ψ ∈ L(A), ψ ∈ T iff f ⊃ ψ is a tautology;
(ii) if ψ ∈ T then Kψ ∈ T ; (iii) if ψ ∈ LK(A) − T
then ¬Kψ ∈ T ; (iv) T is closed under propositional conse-
quence (Marek and Truszczyński 1993).

Next, we prove the correspondence between formulas
strongly almost-surely valid with respect to an objective for-
mula f and the formulas in Stable(f,A). The proof is easily
obtained by extending an analogous result in (Halpern and
Kapron 1994).

Lemma 4.1 Let f ∈ L(A) be a satisfiable objective for-
mula. Then, SAS(f,A) = Stable(f,A).

We now introduce two auxiliary lemmas.

Lemma 4.2 Let ϕ be a flat and knowledge-consistent for-
mula, let Wϕ

n be the set of n-structures for ϕ and let Dn
be the set of n-structures for ϕ in which all worlds satisfy
the same partition (P,N) of MA(ϕ) S5-consistent with ϕ.
Then, limn→∞ |Dn|/|Wϕ

n | = 1.

Proof sketch. The proof is divided in two steps: First,
we prove that, if ϕ is a flat and knowledge-consistent for-
mula, limn→∞ |D′n|/|Wϕ

n | = 1, where D′n denotes the
set of n-structures for ϕ in which no world satisfies an
S5-inconsistent partition of MA(ϕ). Then, we concentrate
on the set D′n: let D′′n denote the subset of D′n in which



two worlds satisfy two different S5-consistent partitions of
MA(ϕ) (P1, N1), (P2, N2), let D1

n be the subset of D′n in
which all worlds satisfy (P1, N1) and let D2

n be the subset
of D′n in which all worlds satisfy (P2, N2). We prove that
either limn→∞ |D′′n|/|D1

n| = 0 or limn→∞ |D′′n|/|D2
n| = 0.

The following property can be derived by an argument
analogous to the proof of Lemma 4.1.

Lemma 4.3 Let ϕ be a flat and knowledge-consistent
formula and let (P,N) be a partition of MA(ϕ) con-
sistent with ϕ. Let Wϕ

n (P,N) denote the set of n-
structures for ϕ in which all worlds satisfy the parti-
tion (P,N), and let Dn be the set of n-structures for
objϕ(P,N) ∧ µ(N), where µ(N) =

∧
Kf∈N ¬Kf .

Then, limn→∞ |Dn|/|Wϕ
n (P,N)| = 1. Moreover,

limn→∞ |Wϕ
n (P,N)| = (hobjϕ(P,N))n · 2n

2
.

We now define S5G-preferred partitions of modal atoms.

Definition 4.4 (S5G-preferred partition) Let ϕ ∈ LK(A).
A partition (P,N) of MA(ϕ) is S5G-preferred for ϕ if
(P,N) is S5-consistent with ϕ and there exists no other par-
tition (P ′, N ′) 6= (P,N) of MA(ϕ) such that (i) (P ′, N ′)
is S5-consistent with ϕ; and (ii) the propositional formula
objϕ(P,N) ∧ ¬objϕ(P ′, N ′) is not satisfiable.

It is immediate to verify that S5G-preferred parti-
tions of MA(ϕ) are in one-to-one correspondence with
S5G-expansions of ϕ: in particular, each such parti-
tion (P,N) identifies the S5G-expansion corresponding to
Stable(objϕ(P,N),A).

We are now ready to show a first fundamental step to-
wards the correspondence between S5G and strong almost-
sure conditional validity: For each knowledge-consistent
modal formula ϕ, to compute (strong) almost sure condi-
tional validity we can safely consider only the set of n-
structures in which all worlds satisfy one of the partitions
of MA(ϕ) that are S5G-preferred for ϕ.

Theorem 4.5 Let ϕ be a flat, knowledge-consistent for-
mula, let Wϕ

n denote the set of n-structures for ϕ, and
let Dn be the union of the sets of n-structures for ϕ
in which all worlds satisfy the same partition (P,N) of
MA(ϕ), where (P,N) is S5G-preferred for ϕ. Then,
limn→∞ |Dn|/|Wϕ

n | = 1.

Proof. Let C′n be the union of the sets of n-structures for
objϕ(P,N)∧µ(N) for each partition (P,N) of MA(ϕ) that
is S5-consistent withϕ. First, by Lemma 4.2 and Lemma 4.3
it follows that limn→∞ |C′n|/|Wϕ

n | = 1. Moreover, let Cn be
the union of the sets of n-structures for objϕ(P,N)∧ µ(N)
for each partition (P,N) of MA(ϕ) that is S5G-preferred for
ϕ: By the same lemmas it follows that limn→∞ |Cn|/|Dn| =
1. Thus, we have to prove that limn→∞ |Cn|/|C′n| = 1.

Let (P,N) be a partition (P,N) of MA(ϕ) S5G-preferred
for ϕ, and consider all the partitions (P ′, N ′) of MA(ϕ)
such that objϕ(P,N) is satisfied by all propositional inter-

pretations satisfying objϕ(P ′, N ′). Let C(P,N)
n be the set of

n-structures for objϕ(P,N)∧µ(N), and let C(P ′,N ′)
n be the

union of the set of n-structures for objϕ(P ′, N ′) ∧ µ(N ′)

for each such partition (P ′, N ′). Obviously, C(P,N)
n ⊆

C(P ′,N ′)
n (since (P,N) is one of such partitions (P ′, N ′)).

We now prove that limn→∞
|C(P,N)

n |
|C(P ′,N′)

n |
= 1. Let C′′n =

C(P ′,N ′)
n − C(P,N)

n . That is, C′′n is the set of n-structures for
objϕ(P ′, N ′)∧ µ(N) for each partition (P ′, N ′) that is S5-
consistent with ϕ and such that objϕ(P,N) is satisfied by all
propositional interpretations satisfying objϕ(P ′, N ′), and
there exists at least an interpretation satisfying objϕ(P,N)∧
¬objϕ(P ′, N ′). Now let k be the number of interpreta-
tions of A satisfying objϕ(P,N): It is immediate to ver-
ify that there can be at most k such different partitions
(P ′, N ′). Moreover, for each such partition (P ′, N ′), there
exists at least a propositional interpretation I that satisfies
objϕ(P,N) and does not satisfy objϕ(P ′, N ′). Therefore,

from Lemma 4.3 we have that |C′′n |
|C(P,N)

n |
≤ k·(k−1)n·2n2

kn·2n2 =

k·((k−1)/k)n. Consequently, limn→∞
|C′′n |

|C(P,N)
n |

= 0, which

proves that limn→∞
|C(P,N)

n |
|C(P ′,N′)

n |
= 1. Hence, limn→∞

|Cn|
|C′n|

=

1.

5 Asymptotic conditional probability and
S5G

In this section we prove the main result of the paper, which
establishes the correspondence between strong almost-sure
conditioned validity and entailment in the logic S5G. To this
aim, we need some preliminary definitions and properties.

Let A′ be the set of propositional atoms ai such that a ∈
A and 1 ≤ i ≤ m. We define the canonical probability
assignment Pc over A′ as follows: Pc(a) = 1

2 for each a ∈
A′. Let A be a propositional alphabet and let If be the set
of propositional interpretations over A that satisfy f . The
canonical probability of a propositional formula f , denoted
by cp(f), is defined as cp(f) = |If |

2|A| .
The following auxiliary lemma establishes a sufficient

condition over the partitions of MA(ϕ) which implies that
limn→∞ pn

Pc(ψ|ϕ) < 1.

Lemma 5.1 Let ϕ ∈ LFK(A). If there exists a par-
tition (P,N) of MA(ϕ) such that: (1) (P,N) is S5G-
preferred for ϕ; (2) for each partition (P ′, N ′) that is S5G-
preferred for ϕ, cp(objϕ(P,N)) ≥ cp(objϕ(P ′, N ′)); (3)
ψ does not hold in the structures for objϕ(P,N), then
lim
n→∞

pn
Pc(ψ|ϕ) < 1.

Let a ∈ A and let P(a) = k where k is a rational number
satisfying the definition of probability assignment. Then,
we can construct a propositional formula fk(a) defined over
an alphabet Ak = {a1, . . . , amk} (where mk is a number
depending on k) such that P(a) = cp(fk(a)). Then, given
a probability assignment P over A, we define τP(ϕ) as the
formula obtained from ϕ by replacing, for each a ∈ A, each
occurrence of a in ϕ with fP(a)(a). Now, in order to prove
our main result, we need some auxiliary lemmas.



Lemma 5.2 Let ψ ∈ LK(A), and let f ∈ L(A). Then,
ψ ∈ SAS(f,A) iff τP(ψ) ∈ SAS(τP(f),Ak).
Lemma 5.3 Let ϕ,ψ ∈ LK(A). then, for each par-
tition (P,N) that is S5G-preferred for ϕ, the partition
(τP(P ), τP(N)) is S5G-preferred for τP(ϕ), while for each
partition (τP(P ), τP(N)) that is S5G-preferred for τP(ϕ),
the partition (P,N) is S5G-preferred for ϕ.

Lemma 5.4 Let ϕ ∈ LK(A). If a partition (P,N)
of MA(ϕ) is S5G-preferred for ϕ, then the stable set of
objϕ(P,N) in A is an S5G-expansion for ϕ. Moreover, if
a set T ⊂ LK(A) is an S5G-expansion for ϕ, then there
exists a partition (P,N) of MA(ϕ) such that (P,N) is S5G-
preferred for ϕ and Stable(objϕ(P,N),A) = T .

Theorem 5.5 Let ϕ ∈ LFK(A), ψ ∈ LK(A), and let ϕ be a
knowledge-consistent formula. Then, ψ conditioned by ϕ is
strongly almost-surely valid iff ϕ |=S5G

ψ.

Proof. First, if ϕ |=S5G
ψ, then, from definition of en-

tailment in S5G and from Lemma 5.4 it follows that, for
each partition (P,N) that is S5G-preferred for ϕ, ψ belongs
to Stable(objϕ(P,N),A), consequently, by Lemma 4.1,
ψ ∈ SAS(objϕ(P,N),A). Hence, by Lemma 5.2 and
Lemma 5.3, for each probability assignment P over A,
τP(ψ) ∈ SAS(τP(objϕ(P,N)),Ak). Therefore, by Theo-
rem 4.5, limn→∞ pn

Pc(τP(ψ)|τP(ϕ)) = 1, which implies
that ψ conditioned by ϕ is strongly almost-surely valid.

Conversely, if ϕ 6|=S5G
ψ, then by Lemma 5.4

it follows that there exists a partition (P,N) that is
S5G-preferred for ϕ and such that ψ does not belong
to Stable(objϕ(P,N),A), consequently, by Lemma 4.1,
ψ 6∈ SAS(objϕ(P,N),A). Therefore, by Lemma 5.2,
τP(ψ) 6∈ SAS(τP(objϕ(P,N)),Ak). Moreover, it is
immediate to verify the existence a probability assign-
ment P ′ over A such that, for each partition (P ′, N ′)
that is S5G-preferred for ϕ, cp(τP′(objϕ(P,N))) ≥
cp(τP′(objϕ(P ′, N ′))). Consequently, by Lemma 5.1, it
follows that limn→∞ pn

Pc(τP(ψ)|τP(ϕ)) < 1, i.e., ψ con-
ditioned by ϕ is not strongly almost-surely valid.

6 Complexity results
As explained above, we consider both the case in whichA is
a fixed finite alphabet and the case in which it is considered
as finite but not fixed in advance. If A is finite and fixed,
then, based on the algorithm for entailment in S5G reported
in (Donini et al. 1997) it can be easily shown that entailment
in S5G can be decided in polynomial time, and therefore, by
Theorem 5.5, strong almost-sure conditional validity can be
decided in polynomial time as well. Consider now the case
of a finite, non-fixed alphabet A.

Theorem 6.1 Let ϕ ∈ LFK(A), ψ ∈ LK(A), and let ϕ be a
knowledge-consistent formula. Deciding whether ψ condi-
tioned by ϕ is strongly almost-surely valid is a Πp

2-complete
problem.

Proof. Follows immediately from Theorem 5.5 and from
the fact that the entailment problem ϕ |=S5G

ψ when ϕ ∈

LFK(A) is Πp
2-complete, which is an immediate consequence

of Corollary 4.12 of (Donini et al. 1997) and of Theorem 11
of (Rosati 1998)).

Next, we study a subclass of flat modal formulas for
which deciding strong almost-sure conditional validity is
computationally easier than in the general case: the class of
honest formulas, introduced by (Halpern and Moses 1985).
A flat formulaϕ is honest iff it has exactly one S5G-model. It
is known that deciding whether ϕ is honest is a Θp

2-complete
problem. Moreover, if ϕ is honest, then deciding the en-
tailment ϕ |=S5G

ψ is also Θp
2-complete. Therefore, from

Theorem 5.5 the following property holds.

Theorem 6.2 Let ϕ ∈ LFK(A), ψ ∈ LK(A), and let ϕ be
a honest formula. Deciding whether ψ conditioned by ϕ is
strongly almost-surely valid is Θp

2-complete.

Furthermore, the notion of honesty precisely character-
izes the subclass of formulas, among the formulas ϕ such
that Kϕ is S5-consistent, that condition according to a 0-1
law, i.e., such that either limn→∞ pn

P(ψ|ϕ) = 1 for each
probability assignment P or limn→∞ pn

P(ψ|ϕ) = 0 for
each probability assignment P , which is immediately im-
plied by Theorem 5.5 and by the fact that a honest formula
has a single S5G-model.

7 Conclusions
The present work can be extended in several directions. In
particular, we are currently investigating the following is-
sues: (i) strong almost-sure validity for (classes of) condi-
tioning formulas with nested occurrences of modalities; (ii)
extending the study of asymptotic conditional validity to the
framework of multimodal logic; (iii) computing P-almost-
sure conditional validity, i.e., the value of the asymptotic
conditional validity for a given probability distribution P of
the truth of primitive propositions.
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