
A Bayesian Approach to Cluster Validation

Hoyt A. Koepke
Department of Computer Science
University of British Columbia

Vancouver, BC
hoytak@cs.ubc.ca

Bertrand Clarke
Department of Statistics

University of British Columbia
Vancouver, BC

riffraff@stat.ubc.ca

Abstract

In this paper, we propose a novel approach to validating clus-
terings. We treat a given clustering as a baseline and define
a collection of perturbations of it that give possibly different
assignment of points to clusters. If these are indexed by a
hyperparameter, integrating with respect to a prior gives an
averaged assignment matrix. This matrix can be visualized
as a heat map, allowing clusterings and their stability proper-
ties to be readily seen. The difference between an averaged
assignment matrix and the baseline gives a measure of the
stability of the baseline. This approach motivates a general
and computationally fast algorithm for evaluating the stabil-
ity of distance-based and exponential-model type clusterings,
includingk-means. In addition, these criteria can be used to
choose the optimal number of clusters. Our method compares
favorably with data based perturbation procedures, such as
subsampling, in some conditions such as small sample size.
In addition, there is evidence that our method performs better
relative to subsampling methods on some problems.

1 Introduction
Validating the solution to unsupervised learning problems,
of which clustering is the most common example, is an
increasingly important problem in many emerging fields.
Once a candidate clustering is found, it is important to as-
sess how well it reflects the natural structure of the data.
The field of cluster validation addresses this by providing
techniques for examining the stability of a clustering. While
numerous algorithms exist to find clusters in many types of
data, and these algorithms play an important role in many
areas of research (see (Jain, Murty, & Flynn 1999) for a re-
view of clustering algorithms), relatively few methods exist
to evaluate the adequacy or stability of the resulting clus-
tering. In this paper, we propose and demonstrate a novel
approach to this problem that permits reliable and efficient
methods to assess the stability of a clustering.

We define the stability of a clustering as the resistance
of the clusters to perturbations; a more stable clustering is
able to withstand more severe perturbations without signif-
icant changes in the point-to-cluster assignment. Previous
approaches to cluster stability have focused on perturbing
the data set (e.g. by adding noise to the data or by sub-
sampling). These, while successful, have several inherent
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downsides, such as the label matching problem, which im-
pede analysis of the results. In contrast, our approach is to
introduce the perturbations into the clustering process itself,
which allows for ways around some of these problems.

This also follows the Bayesian methodology of condition-
ing on the data but expressing uncertainty in the model. By
perturbing parameters in the clustering function, such as the
decision boundaries used for point to cluster assignment, we
are expressing uncertainty about the criteria and measure-
ments that the clustering function uses to partition the data.

While our approach is motivated in part by Bayesian the-
ory, we show that it can yield results comparable to data-
perturbation approaches at a fraction of the computational
cost. Furthermore, it allows us to quickly compute a vi-
sual display of the ways clusters exchange points under per-
turbation, something computationally difficult, or even ill-
defined, with data perturbation methods. Finally, there are
numerous ways of introducing perturbations into the cluster-
ing process in a sensible way, which allows for new research
into cluster stability assessment.

In our approach, we modify the clustering function to take
a hyperparameter that quantitatively introduces some typeof
perturbation, then integrate over a prior on the hyperparam-
eter to obtain a averaged assignment matrix. This averaged
membership matrix can then be plotted using a heat map-like
plot to show how points move under perturbation, providing
an intuitive picture of the stability of the clustering. Fur-
thermore, by integrating over a similarity-based index, we
can naturally incorporate many well-studied scalar stability
indices. To our knowledge, this approach is unique.

In section 2, we formally describe the abstract framework
of our approach. In section 3, we apply it to clustering proce-
dures based on exponential family models, including those
produced byk-means. In section 4, we look at practical
clustering investigation, including a heat map visualization
of the averaged assignment matrix and scalar stability in-
dices. The heat map is a novel tool for assessing the behav-
ior of clusterings under perturbation, and we discuss using
it to determine the number of clusters and demonstrate it on
real data. Finally, in section 5, we present the relative per-
formance of a scalar stability index based on our approach.
The results show that our approach is comparable to exist-
ing methods under many conditions and performs markedly
better under some.



1.1 Relation to previous work
Related work on measuring stability usually involves per-
turbing the data (Hennig 2004), (Giurcaneanu & Tabus
2004), but the method we propose relies on perturbing the
clustering function itself. Methods based on subsampling
(Abul et al. 2003), (Ben-Hur, Elisseeff, & Guyon 2002),
(Smolkin & Ghosh 2003) or resampling (Langeet al. 2002),
(Roth et al. 2002), (Langeet al. 2004), (Moller & Radke
2006) the data have yielded promising results. Other ap-
proaches include using prediction strength (Tibshirani &
Walther 2005) or measuring replication and consistency
across cross-validation (Breckenridge 1989), (Breckenridge
2000). Much research has also focused on using various sta-
bility criteria for determining the number of clusters, with
some success (Ben-Hur, Elisseeff, & Guyon 2002). For
a more comprehensive description of clustering validation,
we refer the reader to (Langeet al. 2004), (Jiang, Tang, &
Zhang 2004) or (Halkidi, Batistakis, & Vazirgiannis 2001).

Many of these data-perturbation approaches can be seen
as a special case of perturbing the clustering function. For
example, weighting or turning data points on and off corre-
sponds to sub-sampling; adding random vectors to the data
points corresponds to adding noise. However, we show that
introducing the perturbation later in the clustering process
can have advantages, namely computational efficiency and
having correctly matched labels across clusterings.

Research has also focused on developing scalar measures
comparing two clusterings, among them the Hubert-Arabie
Adjusted Rand index (Hubert & Arabie 1985) (see (Stein-
ley 2004) for a recent analysis) and a relatively recent one
proposed by Meilă called Variation of Information (Meila
2003), (Meila 2007), both of which we revisit later. Be-
yond these, we refer the reader to (Maulik & Bandyopad-
hyay 2002), (Bezdek & Pal 1998), or (Meila 2007) for com-
parisons and descriptions of various stability indices. As
mentioned, our method naturally incorporates such indices
(see section 4.2).

Using stability indices to choose the appropriate number
of clusters, often by selecting the most stable among several
test cases, is also popular (Vetrov 2006). (Maulik & Bandy-
opadhyay 2002) and (Bezdek & Pal 1998) compare indices
partly by how well they predict this. However, it is not clear
how often these indices are used in practice for model selec-
tion, perhaps because interpreting the results can be difficult
(Tibshirani & Walther 2005).

We suggest that one inherent downside to using scalar sta-
bility indices in practice for model selection (and perhaps
other tasks) is the fact that the behavior of the clustering –
i.e. why a particular index indicates that one clustering is
more stable than another – is, in part, hidden from from the
user. While an overall or per-cluster assessment of the stabil-
ity of a clustering can be quite useful, providing additional
relevant and accurate information gives the user more confi-
dence in the procedure and the stability of the clustering as
a whole. Our method attempts to provide such information
by indicating not onlyhow stable the clusters are, but also
whyby showing the behavior of the clustering under pertur-
bation. We hope that our method provides an intuitive way
to assess cluster stability and behavior in a variety of appli-

cations and a starting point from which to develop further
tools.

2 Framework

The abstract framework we propose can, at a high level, be
applied universally to almost any clustering function. Our
definitions make no assumptions about how the hyperpa-
rameter affects the clustering function; the details will vary
based on the clustering algorithm and what type of stability
one wishes to assess.

SupposeC (K, X ) is a clustering function that parti-
tions a set ofn data X = {x1,x2, ...,xn} into a set
{C1, C2, ..., CK} of K clusters based on some structural
feature of the data. Our approach is to create a new cluster-
ing functionC⋆(K, X , λ) by modifyingC (K, X ) to take a
hyperparameterλ, where the role ofλ is (informally) to per-
turb some relevant aspect of the clustering. We then define a
prior distributionπ(λ) for λ ∈ Λ over the hyperparameter.

Without loss of generality, letC (K, X ) return ann × K
assignment matrixA = [aij ] such thataij equals1 if xi is
in clusterCj and0 otherwise. Likewise, suppose that, for
a givenλ, C⋆(K, X , λ) returns a similarly defined matrix
A⋆(λ) = [a⋆

ij(λ)], where we explicitly denote the depen-
dence onλ. We treatX andK as constants since variations
in X can be incorporated into the perturbation indexed byλ
and multipleK ’s can be handled by allowing empty clusters.

Integratinga⋆
ij(λ) overλj with respect toπ(λ) gives us

ann × K matrixΦ that expresses the average membership
of xi in Cj under perturbation. (Here we assume that the
class labels are matched up; in section 2.1 we discuss re-
laxing this condition.) Formally,Φ can be expressed as a
Riemann-Stieltjes integral (Kestelman 1960), which handles
both continuous and discreteΛ:

Φ = [φij ] =

�
Λ

A⋆(λ)dΠ(λ) (1)

The integration spreads the binary membership matrix
A⋆(λ) across the clusters; thusφij can take on any value
between 0 and 1. Since

∑

j φij = 1, each row ofΦ can
be interpreted as a probability vector, withφij indicating the
probability that datumxi belongs to clusterj given the prior.

We can define the averaged matching matrixM = [mjj′ ]
in terms ofΦ:

M = ATΦ ⇔ mjj′ =
∑

i
aijφij′ =

∑

i:aij=1
φij′ (2)

In this matrix,mjj′ represents the total point-mass (each
point having a mass of 1) in the baseline clusterCj that
moves to clusterC′

j under perturbation. Based on the prob-
abilistic interpretation ofΦ, mjj′/ |Cj | (normalizingM
across rows) is the probability of a point in the baseline clus-
ter j belonging to clusterj′ under perturbation. Likewise,
mjj′/n is the probability that a randomly-selected point be-
longs to clusterj in the baseline clustering and to clusterj′

under perturbation.



2.1 Perturbations and label matching
The clustering function above can be described as a
two stage process, as illustrated in Figure 1; formally,
C (K, X ) = CP (CS(K, X )). The first stage,CS , processes
the data and outputs information (statistics) about the clus-
tering (e.g. centroids in the case ofk-means). The second
stage,CP , uses this information to partition the data points
into clusters. We put no constraints on the form of the in-
formation (e.g. it could be an assignment, making the latter
partitioning step trivial), so this description is sufficiently
general.

If the perturbation is introduced before or intoCS , i.e.
C⋆(K, X , λ) = CP (C⋆

S(K, X , λ)), the cluster labels may
not be correctly matched between runs. As a trivial exam-
ple, two runs of random-startk-means may produce identi-
cal clusterings, but the points associated with one centroid
in the first run may be associated with a differently labeled
centroid in the second.

The label matching problem is inherent in the data per-
turbation methods and has received some attention. Follow-
ing (Breckenridge 2000) and (Langeet al. 2004), we can
permute the labels to maximize the similarity between the
baseline clustering and the perturbed clustering. Formally,
we can introduce aK × K permutation matrixP(λ) to ex-
press this. Equation (1) then becomes:

Φ = [φij ] =

�
Λ

A⋆(λ)P(λ)dΠ(λ) (3)

where

P(λ) = argmax
Q∈P

trace
[

ATA⋆(λ)Q
]

(4)

The definition for equation (2) which follows remains
unchanged. This corresponds to solving a bipartite graph
matching problem between the two sets of clusters labels,
where the edge weights are proportional to the number of
shared points. Finding the optimalP(λ) can be done in
O(K3) time using the Hungarian method (Kuhn 1955) or
network flow simplex (Chvtal 1983). While this is tractable
when testing a small set ofλ, it still imposes a significant
problem.

One way to avoid this problem is to rely on scalar stabil-
ity indices such as those mentioned in section 1.1, most of
which are, by intention, invariant to label permutations. We
discuss using these indices within our framework in section
4.2; however, as discussed, these provide a limited summary
of cluster stability.

Our framework provides an alternative way around the
problem by introducing the perturbation and hyperparam-
eter into theCP step, soC⋆(K, X , λ) = C⋆

P (CS(K, X ), λ).
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Figure 1:The clustering process.

Because the cluster statistics are already calculated, pertur-
bations will not mix up the labels. This avoids the label
matching problem completely, something not possible with
data-perturbation methods.

3 Application to exponential family models
In this section, we examine introducing perturbations into
the assignment stage of the clustering function,CP , when
CS produces exponential family models (Barndorff-Nielsen
1978) that can be parameterized in the formexp[−dij − gj],
wheredij is a distance metric andgj are other model pa-
rameters. Ignoring ties, which in practice can be broken ran-
domly, a pointi is assigned to clusterj if exp[−dij − gj] ≥
exp[−diℓ − gℓ] ∀ ℓ. In the case of clusters defined by cen-
troids (e.g.k-means),dij = ‖xi − µj‖2 (assuming an L2
norm) andgj = const gives the correct assignment. For a
weighted mixture of multivariate Gaussians with hard as-
signment,dij = 1

2
(xi − µj)

T Σ−1

j (xi − µj) and gj =
1

2
log(wj/|2πΣj |).
We tested two ways of introducing perturbations into such

models. The first was to scale the distance to each cluster
centerdij by a hyperparameter sodij → dijλj . The second
approach is to add the hyperparameter sodij → dij + λj .
Because the distance metrics determine the assignment of
points to clusters, we suggest these are reasonable ways to
introduce the perturbation. Another feature of this approach
is that the computational cost is independent of the dimen-
sion of the data if thed’s andg’s are already calculated.

For the multiplicative case, the averaged assignment un-
der perturbation is then given by:

φij =

�
S

π(λ)dλ =

�
S

∏

ℓ

πℓ (λℓ) dλℓ (5)

whereS = {λ : λjdij + gj ≤ λℓdiℓ + gℓ} is the region of
integration and we assume independence between the hy-
perparameters, allowing us to factor the prior. The cor-
responding equation for the additive case is similar, dif-
fering only in that the region of integrationS becomes
{λ : dij + gj + λj ≤ diℓ + gℓ + λℓ}.

To illustrate this, suppose theg terms are constant and
supposexi is assigned to clusterj in the unperturbed as-
signment. If we hold all the hyperparameters fixed except
the one associated with clusterj, then, as we increaseλj ,
the maximum value ofdij such thatxi stays in clusterj de-
creases. Ifdij is small relative todiℓ, ℓ 6= j, it stays assigned
to Cj for higher values ofλj ; if dij is roughly the same, it
moves to another cluster more quickly. If we letλj have an
exponential distribution, soπℓ(λℓ) = ae−aλℓ1{λℓ≥0}, equa-
tion (5) can be integrated directly, giving

φij =
d−1

ij

d−1

ij +
∑

ℓ 6=j d−1

iℓ

. (6)

This perturbation-induced soft assignment gives, informally,
a measure of the competition between the cluster centers;
tighter competition implies a less stable solution.



The other multiplicative prior we evaluate in this paper is
a Gamma distribution with the shape parameterα set to 2. In
this case, evaluating the integral becomes more tedious, and
we derive an algorithm in appendix (A) to calculateΦ ana-
lytically. The same technique can be used to derive equation
(6) for non-constantg’s.

Additive perturbation allows us to focus on the bound-
ary regions where the distances terms are close to each
other. In this paper, we useπℓ (λℓ) = ae−aλℓ1{λℓ≥0} as
the prior distribution for additive perturbations as well.In
this case,φij can be evaluated analytically; the derivation
follows the technique in appendix (A) mentioned above. Let
∆iℓ = diℓ† + gℓ† for ℓ = 1, ..., K, with the† indicating a
permutation of1, ..., K chosen so∆i1 ≤ ∆i2 ≤ · · · ≤ ∆iK .
Then

φij† =
1

j
γij −

XK

ℓ=j+1

γiℓ

ℓ(ℓ − 1)
(7)

where
γiℓ = exp

h

−a
“

ℓ∆iℓ −
Xℓ

m=1
∆im

”i

. (8)

In this case, the scalinga parameter controls the strength of
the perturbation, whereasa drops out in the multiplicative
case above. In equations (7) and (8), asa increases, the per-
turbation becomes negligible and the averaged assignment
matrix approaches the 0-1 baseline assignment. Asa de-
creases, the differences between points relative to the per-
turbation becomes negligible, causingφij to approach1/K.
We found this method to be particularly useful in discover-
ing interactions between clusters, which we discuss in the
next section.

4 Assessing clusterings usingΦ
Once a clustering is found, one should ask how well it re-
flects the natural structure of the data before trying to inter-
pret it in the context of the experiment. Ultimately, tech-
niques for cluster validation need to aid in answering two
overlapping questions regarding quantity and quality. First,
does the number of proposed clusters accurately reflect the
data (Maulik & Bandyopadhyay 2002)? Second, how repre-
sentative of the modes of the underlying distribution is the
clustering? For example, one might want to know how well
the data supports two clusters being distinct or whether all
the significant modes in the data are represented by a cluster.
In this section, we describe two ways of using our method
to help answer these questions.

4.1 Visualizing and interpreting Φ

We present here a simple way to intuitively visualize the be-
havior of a clustering, i.e. the way clusters give and take
points under perturbation, by plotting a rearranged form of
Φ as a heat map. This heat map requires the cluster labels to
be matched up; thus it is computationally difficult using data
perturbation methods or by introducing the perturbation be-
fore the cluster statistics are calculated, but it feasiblewhen
the perturbation is introduced after the cluster statistics are
generated.

Given the averaged assignment matrix and the baseline
assignment, we construct the heat map as follows. We con-
struct an index mapping on the rows (i’s) of Φ that rear-
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Figure 2: Use of the heat map for investigation the structure of
the data. We drew 150 data points from a mixture of four Normals.
The mixing weights were (0.2, 0.25, 0.35, 0.2) and the centers were
at (-2, 5), (2, 1.5), (-3, -3), and (1,-3). The covariances were all dif-
ferent and each had nonzero correlation. Usingk-means, the data
were clustered with three (top), four (middle), and five (bottom)
centroids. Settinga = 0.07 in the additive perturbation equation
(7), we calculated the averaged assignment matrices for thethree
cases. These lead to the heat maps on the right. White represents
stability; black represents instability. These heat maps allow us to
deduce that the correct number of clusters is four. Additionally, the
least stable 20% of the points, as measured byφij − maxℓ 6=j φiℓ,
are circled in red and track the boundaries between the clusters.

ranges the rows ofA so that the nonzero elements are all
in contiguous blocks along the columns and these arranged
in descending order along the rows. Within the blocks, we
permute the rows so the elements in the blockΦ in descend-
ing order. Thus the blocks along the “diagonal” denote the
stability of points relative to their assigned clusters under
perturbation, and the “off-diagonal” blocks represent mem-
bership in other clusters under perturbation. Each row shows
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Figure 3: The behavior of clusterings in the wine data set with
three (left), four (middle), and five (right) clusters underadditive
perturbation with aExp (0.012) prior. White indicates stability rel-
ative to a cluster and black indicates little or no assignment to a
cluster under perturbation.

how the corresponding point behaves when the cluster is per-
turbed; the point mass in unstable points will move away
from the cluster block and into other clusters, as indicated
by the red and orange colors to the side of such blocks. Dark
red or black indicates separation between clusters. This al-
lows us to visualize clearly how clusters exchange points
when perturbed. Note that all comparisons must be done
keeping in mind that only the rows are normalized; compar-
isons within columns are not on the same scale and, though
suggestive, are not formally justified.

While much of the previous work on cluster analysis has
focused on using stability indices to select the number of
clusters, (see related work in section 1.1), the averaged as-
signment matrix provides a more intuitive window into the
behavior of the clustering under perturbation. Indeed the
heat map ofΦ indicates not only which points are unsta-
ble relative to their assigned clusters, but which clustersand
points cause the instability. With too many clusterings, we
should see mutual instability between some of the clusters,
indicating they could be merged; with too few, we should
see a lack of separation between the clusters.

An example of this using a simple 2-d case is shown in
Figure 4. On the top, there isn’t significant separation be-
tween any of the clusters as denoted by the orange and red
throughout the diagonal blocks. In the four cluster case,
cluster pairs (1,2) and (2,4) still exchange some point mass,
but there’s significant separation between clusters as shown
by the darker squares. With five clusters, we still have sig-
nificant separation between some of the clusters, but clusters
4 and 5 exchange significant point mass under perturbation,
indicating mutual instability. Thus we conclude the correct
number of clusters is four.

Figure 3 illustrates the stability heat map on the wine data
set, analyzed by (Aeberhard, Coomans, & de Vel 1992). The
data set contains the results of a chemical analysis of 178
wines grown in the same region in Italy but derived from
three different cultivars. The features in the data set are the
quantities of 13 constituents found in each of the three types

of wines. The dataset is a good way to test clustering al-
gorithms as the three different classes are reasonably well
separated. To demonstrate our heat map, we normalized the
data and clustered it into three, four, and five clusters using
k-means, perturbed the assignment using the additive expo-
nential method, and plotted the result.

There is some instability with three clusters, but in the
four cluster plot, clusters 1 and 2 exchange a lot of point
mass and are less stable overall than the others, indicating
mutual instability. The effect is more apparent with five clus-
ters, where clusters pairs (1, 2) and (3, 5) are mutually un-
stable, signifying too many clusters. Thus we conclude that,
of these test cases, three clusters best fits the data (which is
correct).

4.2 Scalar stability indices
Within our framework, we can naturally incorporate many of
the scalar stability indices referred in section 1.1. Suppose
sim (C1, C2) is an index that compares two clusteringsC1

andC2 and returns a scalar assessment of their similarity
(see section section 1.1). We can then integrate over the
similarity index to obtain an averaged scalar stability index:

sim⋆ (C (K, X )) =

�
Λ

sim (C (K, X ), C⋆(K, X , λ))dΠ(λ) (9)

We present here two scalar assessments of cluster stabil-
ity. The first is the Hubert-Arabie Adjusted Rand index and
the second is the Variation of Information index, both de-
scribed in section 1.1. These can be expressed in a form that,
based on the probabilistic nature ofΦ, allows us to bypass
the integration in equation (9) givenΦ andA.

Let pj = |Cj | /n denote the probability that a datumxi

is assigned to clusterj in the baseline clustering and clus-
ter j′ under perturbation, and letpjj′ = mjj′ andp′j′ =
[
∑

i φij′
]

/n be as defined in section 2. Then, the integration
allows us to use the asymptotic form of the Hubert-Arabie
Adjusted Rand index (Meila 2007), which becomes:

AR⋆(C (K, X )) =

�
Λ

AR(C (K, X ), C⋆(K, X , λ))dΠ(λ)

=

P

j

P

j′ pjj′
2 −

“

P

j pj
2
”“

P

j′ p′
j′

2
”

1
2

h“

P

jpj
2
”

+
“

P

j′p
′
j′

2
”i

−
“

P

jpj
2
”“

P

j′p
′
j′

2
” (10)

Meilă’s Variation of Information is:

VI⋆(C (K, X )) = −
∑

j

pj log pj −
∑

j′

p′j′ log p′j′

− 2
∑

j

∑

j′

pjj′ log
pjj′

pjp′j′
(11)

where all summations are from 1 to K.AR(C1, C2) ranges
between 0 and 1, with 1 indicating stability, whereas
VI(C1, C2) is a metric, with 0 indicating a perfect match.
Note that these indices are independent of the ordering on
the cluster labels; thus they provide a way around the label
matching problem (see section 2.1). For the derivations and
interpretation of equations (10) and (11), we refer the reader
to (Hubert & Arabie 1985) and (Meila 2003).



5 Verification and testing
In our tests, we compare a scalar stability index based on
multiplicative perturbation using an exponential prior and a
gamma prior with one based on data perturbation using sub-
sampling. In general, our method performs reasonably well.
In higher dimensions, there is evidence that it outperforms
data perturbation approaches, particularly when the size of
the clusters is small.

We found that the Variation of Information index per-
formed slightly worse than the Hubert-Arabie Adjusted
Rand index, but that may be because it is more difficult to
heuristically compare across different numbers of clusters.
Also, while the additive method is best at creating meaning-
ful heat maps, we have not yet found a way to automatically
tune the free parametera to allow us to meaningfully com-
pare the resulting stability indices across differentk; thus we
leave that method out of the comparison as well.

To generate the synthetic data, we sampled 100 points
from an equally weighted mixture ofktrue N

(

µ, σ2
withinI

)

Gaussians, withµ iid∼ N
(

0, σ2
betweenI

)

, and the cluster size
at 5 or above. The free parameters are the dimension, the
number of clustersktrue, and the ratio of within cluster vari-
ance (σ2

within) to between cluster variance (σ2
between). A higher

σ2
within/σ2

between ratio means the points in the clusters are
more spread out relative to the cluster centers and the prob-
lem becomes more difficult.

Each test consists of runningk-means on a sampled data
set with k = 2, ..., 10 centroids. We then perturb the re-
sulting cluster models using one of the methods described
in section 3 and use equation (10) to generate a measure of
stability. The estimate ofktrue, k̂, is the most stable.

We also compare our method against data perturbation
methods using subsampling (see section 1.1). The subsam-
pling method compares, using a stability index, the cluster-
ing on the full data against clusterings on data where 30%,
40%, 50%, 60%, and 70% of the original points have been
discarded at random. We then use the median of the final list
of stability indices in estimatingktrue.

For each given dimension andσ2
within/σ2

between, we calcu-
late k̂ on 750 distributions for each ofktrue = 2, ..., 10. We
then plotted the mean absolute deviation ofk̂ from ktrue as
a function ofσ2

within/σ2
between, as shown in Figure 4, for 15,

100, and 500 dimensions. In all three cases, ourGa (2, β)
method outperformed the subsampling based method until
the problem becomes significantly difficult.

The multiplicative perturbation with theGamma (2, β)
prior and usingAR⋆ generally performed the best. We
suspect that the exponential prior performs worse than the
Gamma (2, β) prior because the former puts more weight on
multiplicative perturbations close to zero which may falsely
convey stability when all the distances are compared. The
data perturbation approach still tended to be better on the
hardest problems, but only when the points within the clus-
ters were spread out enough to overlap significantly. At that
point, it becomes questionable whetherktrue accurately re-
flects the structure of the data and the accuracy of the test is
debatable.

Note that the subsampling method never achieves 100%
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Figure 4: The mean absolute deviation of the three methods
described in the text as a function of increasingσ2

within/σ2
between.

AR − SS is the subsampling method andAR⋆ − Exp and
AR⋆ −Ga(2, β) use multiplicative perturbation with an exponen-
tial prior and aGa (α = 2, β) prior, respectively. Our methods,
particularlyGa (2, β), outperform the subsampling methods until
σ2

within/σ2
betweenbecomes significantly large and the clusters tend to

overlap.

accuracy, even on the easiest problems. This is likely be-
cause of the small number of data points in many of the
clusters; subsampling throws away information on each trial
and by doing so may miss smaller clusters. In these cases,
our method has an advantage as it considers all the available



AR using data subsampling.
k̂ −→
ktrue ↓

2 3 4 5 6 7 8 9 10

3 .08 .43 .09 .16 .09 .06 .04 .02 .02
4 .04 .17 .29 .26 .12 .06 .02 .02 .01
5 .05 .10 .24 .35 .10 .08 .03 .02 .02
6 .05 .12 .19 .16 .29 .10 .06 .02 .02
7 .05 .11 .17 .19 .23 .09 .04 .06 .05
8 .08 .07 .20 .16 .17 .16 .06 .07 .02
9 .04 .14 .16 .17 .16 .13 .05 .09 .06

AR⋆ with Exponential Prior.
k̂ −→
ktrue ↓

2 3 4 5 6 7 8 9 10

3 .06 .34 .43 .09 .04 .01 .01 .01 .01
4 .06 .13 .42 .26 .06 .03 .01 .01 .02
5 .04 .05 .11 .24 .44 .06 .03 .02 .01
6 .06 .06 .08 .37 .22 .10 .05 .03 .03
7 .05 .03 .04 .07 .12 .24 .20 .15 .12
8 .11 .05 .05 .06 .09 .12 .33 .13 .08
9 .14 .05 .04 .05 .06 .09 .29 .13 .14

AR⋆ with aGamma (α = 2, β) prior.
k̂ −→
ktrue ↓

2 3 4 5 6 7 8 9 10

3 .04 .36 .41 .09 .04 .02 .01 .01 .01
4 .02 .14 .43 .27 .06 .03 .02 .02 .01
5 .03 .03 .11 .27 .43 .07 .03 .02 .01
6 .05 .05 .08 .39 .23 .09 .05 .03 .03
7 .03 .02 .02 .05 .13 .23 .21 .17 .12
8 .10 .05 .04 .05 .09 .12 .35 .12 .08
9 .09 .05 .04 .05 .05 .09 .34 .15 .15

Table 1: The performance of three methods on 500 dimensional
data drawn from a hierarchical Gaussian mixture model described
in the text. For a givenktrue ∈ {3, ..., 9}, we generate 750 dis-
tributions and estimate the number of clusters on each. The en-
tries within a row given the resulting distribution of̂k. Larger
entries close to the diagonal indicate better performance.In this
test, our methods compare favorably to the data perturbation meth-
ods. When the number of clusters is small, so each cluster is large,
data perturbation is comparable to ours. As the number of clusters
grows, so the average number of points in a cluster decreases, our
method begins to greatly outperform data perturbation methods, as
shown by the elements close to the diagonal in the resulting tables.

information.
In higher dimensions, the ratio of any two random dis-

tance measures approaches 1 (Hinneburg, Aggarwal, &
Keim 2000), and this is often referred to as the “curse of di-
mensionality,” as it makes clustering and similar procedures
much more difficult. If the clusters are not well separated,
spurious clusterings cause all three methods to break down.

The two cases we looked at in which all three methods per-
form well enough to be compared are when the clusters are
uniformly Gaussian, as in our generated data, and when the
clusters are separated enough to make them well defined.

In our test of the latter case, our approach signifi-
cantly outperforms data subsampling. We generated clus-
ters using a hierarchical model, where distribution is drawn
from a mixture ofN

(

µ, diag
(

σ2
1, σ

2
2, ..., σ

2
n

))

, where
σ2

i
iid∼ Ga (2τk,1/2) and τ2

k
iid∼ Ga (0.2,1/2). This causes

significant variance in the size and shape of the clusters,
which is what one would expect in real data. We chose these
parameters to maximize the average variance of the clusters
while still keeping the results comparable. Increasing the
average variance beyond this causes the error rate of all the
methods to fall apart and perform little better than random.
Table1 shows the performance of our method as a function
of k̂ andktrue.

While the above tests, by themselves, are insufficient to
establish our method for wide use on real data, they show
that it holds potential to match or outperform existing data
perturbation methods. More work is needed to understand
the ways of introducing perturbation and the conditions un-
der which our method performs reliably, and more tests are
needed on more difficult and varied data. However, it is
worthwhile to note that the subsampling method requires
multiple runs of the clustering algorithm, making it more
computationally expensive. Furthermore, the above tests use
only the scalar stability indices; the heat map gives addi-
tional information which we ignore here for the purpose of
comparison. In assessing clusterings on real data, we sug-
gest that the heat map is far more useful than scalar stability
indices.

6 Conclusion

In this paper, we have proposed a novel and promising
framework based on perturbing the clustering function from
which to develop new methods for cluster validations. We
introduce a new tool for investigating the behavior of cluster-
ings under perturbations in the form of a heat map plot of the
averaged assignment matrix and show how existing stability
indices can be incorporated into our framework. We propose
three specific methods and demonstrate that they compare
favorably against existing methods under some conditions.

Future work includes developing the theory around opti-
mally choosing the type of perturbation and the prior, which
would likely give better results than those presented here.
Also, stability data from our method could be used by a
clustering algorithm to improve accuracy. Finally, the tech-
nique could naturally be extended to other types of cluster-
ings, such as graph clusterings, or other unsupervised learn-
ing problems.
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A Multiplicative perturbations under a
Gamma (α = 2, β) prior

Calculating equation (5) for multiplicative perturbations and
a Gamma (α = 2, β) prior is reasonably straightforward al-
beit messy. We outline the key steps of the derivation here
but omit the tedious algebra. First, let theg’s be in sorted
order, sog1≤g2≤· · ·≤gK . In practice, this can be accom-
plished by mapping the indices before and remapping them
afterwards. The derivation for equation (7) is identical, ex-
cept that the prior is different, theg·’s becomed· + g·, and
d’s become 1. We can rewrite equation (5) (keeping the prior
general for convenience) as:

φij=

�
Y

ℓ

π(λℓ)δ((λℓdiℓ+gℓ)−(λjdij +gj)−tℓ)dtℓdλ (12)

where δ(·) is the Dirac delta function, defined such that� b

a
δ(x−t)dt equals one ifa ≤ x ≤ b and zero otherwise, so

1{a≤b} =
�∞

0
δ(b− a− t)dt, andf(x) =

�
f(t)δ(x− t)dt

(Arfken, Weber, & Ruby 1996). Using this,

φij=

�
π(λj)

Y

ℓ 6=j

�
π

„

1

diℓ
(tℓ+dijλj +gj−gℓ)

«

1

diℓ
dtℓdλj (13)

We set the shape parameterα to 2 to make the derivation
tractable while still preserving the desired shape. Because of
the comparison, the final result is independent of the scale
parameterβ, so we setβ = 1 for convenience. Defining
ξijℓ(λj) = (dijλj + gj − gℓ)/diℓ for convenience, we have

φij =

�
λje

−λj
Y

ℓ 6=j

[tℓ + ξijℓ(λj)] e
−tℓ−ξijℓ(λj)

× I [tℓ + ξijℓ(λj) ≥ 0] dtℓdλj

(14)

=

�
λje

−λj
Y

ℓ 6=j

h

(1 + ξijℓ(λj))e
−ξijℓ(λj)

i

I[ξijℓ(λj)≥0]
dλj

To evaluate the integral, we can use the division points at
ξijℓ(λj) = 0 ⇔ λj = (gℓ − gj)/dij to break it up into at
mostK + 1 discrete regions and integrate each separately.
Lethℓ

ij = (gℓ−gj)/dij denote the division points (recall that

g: is in sorted order), and for convenience, lethK+1

ij = ∞.

Note thathj
ij = 0, so we only need to integrate between the

division pointshj
ij , h

j+1

ij , ..., hK+1

ij to calculateφij :

φij =
K

X

m=j

� hm+1

ij

hm
ij

λje
−λj

m
Y

ℓ=1
ℓ 6=j

(1 + ξijℓ(λj))e
−ξijℓ(λj)dλj (15)

We useγij = dijλj + gj to transform the variable of
integration, yielding:

φij =
K

X

m=j

� gm+1

gm

m
Y

ℓ=1
ℓ 6=j

»

1−
gℓ

diℓ
+

γij

diℓ

–»

γij−gj

dij

–

× exp

»

−
m

X

ℓ=1

γij − gℓ

diℓ

–

1

dij
dγij .

=
1

dij

K
X

m=j

� gm+1

gm

»

Pim(γij) − Pim(γij)
dij

dij−gj +γij

–

× exp

»

−

m
X

ℓ=1

γij − gℓ

diℓ

–

dγij (16)

where Pim(y) is a polynomial, equal toPim(y) =
∏m

ℓ=1
[1 − gℓ/diℓ + y/diℓ] =

∑m

k=0
pim

k yk. We can eval-
uate the integral by first calculating the coefficientspim

k us-
ing recursion. We then need to integrate the difference of
two polynomials times an exponential, so the result is in the
same form:� m

X

k=0

„

pim
k −

dijp
im
k

dij−gj +y

«

yke−y/Dimdy

=

m
X

k=0

“

qim
k − rijm

k

”

yke−y/Dim (17)

whereDim =
[
∑m

ℓ=1
d−1

iℓ

]−1
. We can calculateqim

k and
integrating successively lower powers ofγij , resulting in an-
other recurrence. Likewise, the division and integration on
rijm
k can be expressed as a recurrence. Finally, we have

φij =
1

dij

»

Tij,ℓ=j(gj)e
−Gi,ℓ=j

+

K
X

ℓ=j+1

(Tijℓ(gℓ) − Tij,ℓ−1(gℓ))e
−Giℓ

–

(18)

where

Tijm(y) =
m

X

k=0

“

qim
k − rijm

k

”

yk Giℓ =
ℓ

X

m=1

gm − gℓ

diℓ
(19)

and

pim
k =

8

<

:

d−1
im

ˆ

pi,m−1
k−1 +(dim−gm)pi,m−1

k

˜

0≤k≤m,1≤m≤K
1 m = k = 0
0 otherwise

(20)

qim
k =



Dim

ˆ

(k+1)qim
k+1 + pim

k

˜

0≤k≤m,1≤m≤K
0 otherwise

(21)

rijm
k =

8

>

>

>

<

>

>

>

:

ˆ

Dim(k+1)−dij +gj

˜

rijm
k+1

+Dim

ˆ

(dij−gj)(k+2)rijm
k+2 + dijp

i,m
k+1

˜

0≤k≤m−1,1≤m≤K

0 otherwise
(22)

If g1 = g2 = · · · = gK , then they can be shifted sogℓ = 0
without changing the result. In this case,Giℓ = 0, soφij =

Tiji,ℓ=K(0)/dij = (qi,m=K
0 − rij,m=K

0 )/dij .
For the general case, evaluatingTijim(·) takesO(K) time

perm for O(K2) time peri, j pair andO(nK3) overall. For
gℓ = const, we only needqi,m=K

0 andrij,m=K
0 , for O(K)

time peri, j pair andO(nK2) overall. Note that calculating
pim

k once peri is sufficient.
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