A Bayesian Approach to Cluster Validation

Hoyt A. Koepke
Department of Computer Science
University of British Columbia
Vancouver, BC
hoyt ak@s. ubc. ca

Abstract

In this paper, we propose a novel approach to validating clus
terings. We treat a given clustering as a baseline and define
a collection of perturbations of it that give possibly ditat
assignment of points to clusters. If these are indexed by a
hyperparameter, integrating with respect to a prior gives a
averaged assignment matrix. This matrix can be visualized
as a heat map, allowing clusterings and their stability prop
ties to be readily seen. The difference between an averaged
assignment matrix and the baseline gives a measure of the
stability of the baseline. This approach motivates a génera
and computationally fast algorithm for evaluating the #tab

ity of distance-based and exponential-model type clusgsri
including k.-means. In addition, these criteria can be used to
choose the optimal number of clusters. Our method compares
favorably with data based perturbation procedures, such as
subsampling, in some conditions such as small sample size.
In addition, there is evidence that our method performsbett
relative to subsampling methods on some problems.

1 Introduction

Validating the solution to unsupervised learning problems
of which clustering is the most common example, is an
increasingly important problem in many emerging fields.
Once a candidate clustering is found, it is important to as-
sess how well it reflects the natural structure of the data.
The field of cluster validation addresses this by providing
techniques for examining the stability of a clustering. W&hi
numerous algorithms exist to find clusters in many types of
data, and these algorithms play an important role in many
areas of research (see (Jain, Murty, & Flynn 1999) for a re-
view of clustering algorithms), relatively few methods sxi

to evaluate the adequacy or stability of the resulting clus-
tering. In this paper, we propose and demonstrate a novel
approach to this problem that permits reliable and efficient
methods to assess the stability of a clustering.

We define the stability of a clustering as the resistance
of the clusters to perturbations; a more stable clustesng i
able to withstand more severe perturbations without signif
icant changes in the point-to-cluster assignment. Praviou
approaches to cluster stability have focused on perturbing
the data set (e.g. by adding noise to the data or by sub-

sampling). These, while successful, have several inherent
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downsides, such as the label matching problem, which im-
pede analysis of the results. In contrast, our approach is to
introduce the perturbations into the clustering procesfit
which allows for ways around some of these problems.

This also follows the Bayesian methodology of condition-
ing on the data but expressing uncertainty in the model. By
perturbing parameters in the clustering function, suckas t
decision boundaries used for point to cluster assignment, w
are expressing uncertainty about the criteria and measure-
ments that the clustering function uses to partition tha.dat

While our approach is motivated in part by Bayesian the-
ory, we show that it can yield results comparable to data-
perturbation approaches at a fraction of the computational
cost. Furthermore, it allows us to quickly compute a vi-
sual display of the ways clusters exchange points under per-
turbation, something computationally difficult, or eveh il
defined, with data perturbation methods. Finally, there are
numerous ways of introducing perturbations into the cluste
ing process in a sensible way, which allows for new research
into cluster stability assessment.

In our approach, we modify the clustering function to take
a hyperparameter that quantitatively introduces somedfpe
perturbation, then integrate over a prior on the hyperparam
eter to obtain a averaged assignment matrix. This averaged
membership matrix can then be plotted using a heat map-like
plot to show how points move under perturbation, providing
an intuitive picture of the stability of the clustering. Fur
thermore, by integrating over a similarity-based index, we
can naturally incorporate many well-studied scalar sitgbil
indices. To our knowledge, this approach is unique.

In section 2, we formally describe the abstract framework
of our approach. In section 3, we apply it to clustering proce
dures based on exponential family models, including those
produced byk-means. In section 4, we look at practical
clustering investigation, including a heat map visuaimat
of the averaged assignment matrix and scalar stability in-
dices. The heat map is a novel tool for assessing the behav-
ior of clusterings under perturbation, and we discuss using
it to determine the number of clusters and demonstrate it on
real data. Finally, in section 5, we present the relative per
formance of a scalar stability index based on our approach.
The results show that our approach is comparable to exist-
ing methods under many conditions and performs markedly
better under some.



1.1 Relation to previous work

Related work on measuring stability usually involves per-
turbing the data (Hennig 2004), (Giurcaneanu & Tabus
2004), but the method we propose relies on perturbing the
clustering function itself. Methods based on subsampling
(Abul et al. 2003), (Ben-Hur, Elisseeff, & Guyon 2002),
(Smolkin & Ghosh 2003) or resampling (Langeal. 2002),
(Roth et al. 2002), (Langeet al. 2004), (Moller & Radke
2006) the data have yielded promising results. Other ap-
proaches include using prediction strength (Tibshirani &
Walther 2005) or measuring replication and consistency
across cross-validation (Breckenridge 1989), (Breckigyai

2000). Much research has also focused on using various sta-

bility criteria for determining the number of clusters, kit
some success (Ben-Hur, Elisseeff, & Guyon 2002). For
a more comprehensive description of clustering validation
we refer the reader to (Langg al. 2004), (Jiang, Tang, &
Zhang 2004) or (Halkidi, Batistakis, & Vazirgiannis 2001).

cations and a starting point from which to develop further
tools.

2 Framework

The abstract framework we propose can, at a high level, be
applied universally to almost any clustering function. Our
definitions make no assumptions about how the hyperpa-
rameter affects the clustering function; the details walfy
based on the clustering algorithm and what type of stability
one wishes to assess.

Suppose? (K, x) is a clustering function that parti-
tions a set ofn datax = {xi,x2,...,x,} Into a set
{C1,Cs,...,Ck} of K clusters based on some structural
feature of the data. Our approach is to create a new cluster-
ing function@* (K, x, A) by modifying ¢ (K, x) to take a
hyperparametex, where the role oA is (informally) to per-
turb some relevant aspect of the clustering. We then define a

Many of these data-perturbation approaches can be seenprior distributionr(X) for A € A over the hyperparameter.

as a special case of perturbing the clustering function. For
example, weighting or turning data points on and off corre-

Without loss of generality, |e¥ (K, x) return ann x K
assignment matriA = [a;;] such thai;; equalsl if x; is

sponds to sub-sampling; adding random vectors to the datain clusterC; and0 otherwise. Likewise, suppose that, for
points corresponds to adding noise. However, we show that a given\, ¢* (K, x, ) returns a similarly defined matrix

introducing the perturbation later in the clustering psxe  A*(X\) = [a};(\)], where we explicitly denote the depen-
can have advantages, namely computational efficiency and dence om\. We treatr and KX as constants since variations

1,
having correctly matched labels across clusterings.

in x can be incorporated into the perturbation indexedby

Research has also focused on developing scalar measuresand multipleX’s can be handled by allowing empty clusters.

comparing two clusterings, among them the Hubert-Arabie
Adjusted Rand index (Hubert & Arabie 1985) (see (Stein-
ley 2004) for a recent analysis) and a relatively recent one
proposed by Meila called Variation of Information (Meila
2003), (Meila 2007), both of which we revisit later. Be-
yond these, we refer the reader to (Maulik & Bandyopad-
hyay 2002), (Bezdek & Pal 1998), or (Meila 2007) for com-
parisons and descriptions of various stability indices. As
mentioned, our method naturally incorporates such indices
(see section 4.2).

Using stability indices to choose the appropriate number
of clusters, often by selecting the most stable among skevera
test cases, is also popular (Vetrov 2006). (Maulik & Bandy-
opadhyay 2002) and (Bezdek & Pal 1998) compare indices
partly by how well they predict this. However, it is not clear
how often these indices are used in practice for model selec-
tion, perhaps because interpreting the results can beuiffic
(Tibshirani & Walther 2005).

We suggest that one inherent downside to using scalar sta-
bility indices in practice for model selection (and perhaps
other tasks) is the fact that the behavior of the clustering —
i.e. why a particular index indicates that one clustering is
more stable than another — is, in part, hidden from from the
user. While an overall or per-cluster assessment of thd-stab
ity of a clustering can be quite useful, providing additibna
relevant and accurate information gives the user more confi-
dence in the procedure and the stability of the clustering as
a whole. Our method attempts to provide such information
by indicating not onlyhow stable the clusters are, but also
whyby showing the behavior of the clustering under pertur-
bation. We hope that our method provides an intuitive way
to assess cluster stability and behavior in a variety ofiappl

Integratinga;; () over\; with respect tor(\) gives us
ann x K matrix ® that expresses the average membership
of x; in C; under perturbation. (Here we assume that the
class labels are matched up; in section 2.1 we discuss re-
laxing this condition.) Formally® can be expressed as a
Riemann-Stieltjes integral (Kestelman 1960), which hasad|
both continuous and discrete

® = (o] = [ AR @
The integration spreads the binary membership matrix
Ar(X) across the clusters; thuys; can take on any value
between 0 and 1. Sincgj ¢ij = 1, each row of® can
be interpreted as a probability vector, witfy indicating the
probability that datunx; belongs to clustef given the prior.

We can define the averaged matching maidx= [m ;]
in terms of®:

M=AT® mjjy = Zl aijGijr = Z

iy (D)
itag ;=1

In this matrix,m ;- represents the total point-mass (each
point having a mass of 1) in the baseline clustgrthat
moves to cluste€’; under perturbation. Based on the prob-
abilistic interpretation of®, m;; /|C;| (normalizing M
across rows) is the probability of a pointin the baselins<lu
ter j belonging to clustej’ under perturbation. Likewise,
m;; /n is the probability that a randomly-selected point be-
longs to clustey in the baseline clustering and to clusgér
under perturbation.



2.1 Perturbations and label matching

The clustering function above can be described as a
two stage process, as illustrated in Figure 1; formally,
C(K,x) = 6p(€s(K,x)). The first stagezs, processes
the data and outputs information (statistics) about the-clu
tering (e.g. centroids in the case loimeans). The second
stage,ép, uses this information to partition the data points
into clusters. We put no constraints on the form of the in-
formation (e.g. it could be an assignment, making the latter
partitioning step trivial), so this description is suffictly
general.

If the perturbation is introduced before or int, i.e.
¢ (K,x,\) = €p(¢5(K,x,N)), the cluster labels may
not be correctly matched between runs. As a trivial exam-
ple, two runs of random-staktmeans may produce identi-
cal clusterings, but the points associated with one cemhtroi
in the first run may be associated with a differently labeled
centroid in the second.

The label matching problem is inherent in the data per-
turbation methods and has received some attention. Follow-
ing (Breckenridge 2000) and (Lang¢ al. 2004), we can
permute the labels to maximize the similarity between the
baseline clustering and the perturbed clustering. Fogmall
we can introduce & x K permutation matri® (\) to ex-
press this. Equation (1) then becomes:

® = (o] = [ AQPAAIR) ®)

where
(4)

P()\) = argmax trace [ATA*(A)Q}
QeP

The definition for equation (2) which follows remains
unchanged. This corresponds to solving a bipartite graph
matching problem between the two sets of clusters labels,
where the edge weights are proportional to the number of
shared points. Finding the optimBI(A) can be done in
O(K?) time using the Hungarian method (Kuhn 1955) or
network flow simplex (Chvtal 1983). While this is tractable
when testing a small set o, it still imposes a significant
problem.

One way to avoid this problem is to rely on scalar stabil-
ity indices such as those mentioned in section 1.1, most of
which are, by intention, invariant to label permutatione W
discuss using these indices within our framework in section

4.2; however, as discussed, these provide a limited summary

of cluster stability.

Our framework provides an alternative way around the
problem by introducing the perturbation and hyperparam-
eter into theép step, s06* (K, x,A) = G5 (6s(K, x), N).

s> Cluster Informatiory-¢»

Figure 1:The clustering process.

Because the cluster statistics are already calculatetyyrper
bations will not mix up the labels. This avoids the label
matching problem completely, something not possible with
data-perturbation methods.

3 Application to exponential family models

In this section, we examine introducing perturbations into
the assignment stage of the clustering functieh, when

¢s produces exponential family models (Barndorff-Nielsen
1978) that can be parameterized in the festn[—d;; — g;],
whered;; is a distance metric ang; are other model pa-
rameters. Ignoring ties, which in practice can be broken ran
domly, a point is assigned to clusterif exp[—d;; — g;] >
exp[—di¢e — g¢] VL. In the case of clusters defined by cen-
troids (e.g.k-means)d;; = [|x; — ;|2 (@ssuming an L2
norm) andg; = const gives the correct assignment. For a
weighted mixture of multivariate Gaussians with hard as-
signment,d;; = 3(x; — p;)"S; " (xi — ;) andg; =
Llog(w; /|27%,)).

We tested two ways of introducing perturbations into such
models. The first was to scale the distance to each cluster
centerd;; by a hyperparameter sb; — d;;\;. The second
approach is to add the hyperparametetlso— d;; + A;.
Because the distance metrics determine the assignment of
points to clusters, we suggest these are reasonable ways to
introduce the perturbation. Another feature of this apphoa
is that the computational cost is independent of the dimen-
sion of the data if the’s andg’s are already calculated.

For the multiplicative case, the averaged assignment un-
der perturbation is then given by:

bij _/Sﬁ(A)dA_/S];[m (Ae) dX (5)

whereS = {X : A\;jd;; + g; < A\edie + g¢} IS the region of
integration and we assume independence between the hy-
perparameters, allowing us to factor the prior. The cor-
responding equation for the additive case is similar, dif-
fering only in that the region of integratio§ becomes

A idij+ g5+ A <die + g0+ e}

To illustrate this, suppose theterms are constant and
supposex; is assigned to clustef in the unperturbed as-
signment. If we hold all the hyperparameters fixed except
the one associated with clustgrthen, as we increask;,
the maximum value of;; such thatx; stays in clustey de-
creases. Ifl;; is small relative tal;,, £ # j, it Stays assigned
C; for higher values of\;; if d;; is roughly the same, it
moves to another cluster more quickly. If we dethave an
exponential distribution, se;(\;) = ae = 15,0}, €QUa-
tion (5) can be integrated directly, giving

1

_ dij

= -
dij + 2 0 dig

This perturbation-induced soft assignment gives, infdlyma
a measure of the competition between the cluster centers;
tighter competition implies a less stable solution.

bij (6)



The other multiplicative prior we evaluate in this paper is
a Gamma distribution with the shape parametset to 2. In
this case, evaluating the integral becomes more tediods, an
we derive an algorithm in appendix (A) to calcul&@eana-
lytically. The same technique can be used to derive equation
(6) for non-constang’s.

Additive perturbation allows us to focus on the bound-
ary regions where the distances terms are close to each
other. In this paper, we use, (\;) = ae*‘“flwzo} as
the prior distribution for additive perturbations as wdlh
this case;; can be evaluated analytically; the derivation
follows the technique in appendix (A) mentioned above. Let
Aiy = dypt + gpt for ¢ = 1,..., K, with the t indicating a
permutationofi, ..., K chosensd\;; < Ajp < --- < Ak
Then

B 1 o K Yie
Pigt = 57 2 (e —1) v
where Ze
Yie = exp [_a@Aiz - m=1 Am)] . ©

In this case, the scalingparameter controls the strength of
the perturbation, whereasdrops out in the multiplicative
case above. In equations (7) and (8)qascreases, the per-
turbation becomes negligible and the averaged assignment
matrix approaches the 0-1 baseline assignment.a Als-
creases, the differences between points relative to the per
turbation becomes negligible, causing to approach /K.

We found this method to be particularly useful in discover-
ing interactions between clusters, which we discuss in the
next section.

4 Assessing clusterings using

Once a clustering is found, one should ask how well it re-
flects the natural structure of the data before trying torinte
pret it in the context of the experiment. Ultimately, tech-
niques for cluster validation need to aid in answering two
overlapping questions regarding quantity and qualitystfir
does the number of proposed clusters accurately reflect the
data (Maulik & Bandyopadhyay 2002)? Second, how repre-
sentative of the modes of the underlying distribution is the
clustering? For example, one might want to know how well
the data supports two clusters being distinct or whether all
the significant modes in the data are represented by a cluster
In this section, we describe two ways of using our method
to help answer these questions.

4.1 Visualizing and interpreting ®

We present here a simple way to intuitively visualize the be-
havior of a clustering, i.e. the way clusters give and take
points under perturbation, by plotting a rearranged form of
® as a heat map. This heat map requires the cluster labels to
be matched up; thus it is computationally difficult usingadat
perturbation methods or by introducing the perturbation be
fore the cluster statistics are calculated, but it feasiiien
the perturbation is introduced after the cluster stasgie
generated.

Given the averaged assignment matrix and the baseline
assignment, we construct the heat map as follows. We con-
struct an index mapping on the rowss] of & that rear-
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Figure 2: Use of the heat map for investigation the structure of
the data. We drew 150 data points from a mixture of four Nosmal
The mixing weights were (0.2, 0.25, 0.35, 0.2) and the centere

at (-2, 5), (2, 1.5), (-3, -3), and (1,-3). The covariancesana dif-
ferent and each had nonzero correlation. Udingeans, the data
were clustered with three (top), four (middle), and five tbot)
centroids. Setting = 0.07 in the additive perturbation equation
(7), we calculated the averaged assignment matrices fahtke
cases. These lead to the heat maps on the right. White regsese
stability; black represents instability. These heat mdjosvaus to
deduce that the correct number of clusters is four. Additilgnthe
least stable 20% of the points, as measuregy— maxe; ¢ir,

are circled in red and track the boundaries between theetfist

ranges the rows oA so that the nonzero elements are all
in contiguous blocks along the columns and these arranged
in descending order along the rows. Within the blocks, we
permute the rows so the elements in the bléck descend-

ing order. Thus the blocks along the “diagonal” denote the
stability of points relative to their assigned clusters emd
perturbation, and the “off-diagonal” blocks represent mem
bership in other clusters under perturbation. Each row show
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Figure 3: The behavior of clusterings in the wine data set with
three (left), four (middle), and five (right) clusters undelditive
perturbation with axp(0.012) prior. White indicates stability rel-
ative to a cluster and black indicates little or no assigrintera
cluster under perturbation.

how the corresponding point behaves when the cluster is per-
turbed; the point mass in unstable points will move away
from the cluster block and into other clusters, as indicated
by the red and orange colors to the side of such blocks. Dark
red or black indicates separation between clusters. This al
lows us to visualize clearly how clusters exchange points
when perturbed. Note that all comparisons must be done
keeping in mind that only the rows are normalized; compar-
isons within columns are not on the same scale and, though
suggestive, are not formally justified.

While much of the previous work on cluster analysis has
focused on using stability indices to select the number of
clusters, (see related work in section 1.1), the averaged as
signment matrix provides a more intuitive window into the
behavior of the clustering under perturbation. Indeed the
heat map of® indicates not only which points are unsta-
ble relative to their assigned clusters, but which clusieis
points cause the instability. With too many clusterings, we
should see mutual instability between some of the clusters,
indicating they could be merged; with too few, we should
see a lack of separation between the clusters.

An example of this using a simple 2-d case is shown in
Figure 4. On the top, there isn’t significant separation be-

of wines. The dataset is a good way to test clustering al-
gorithms as the three different classes are reasonably well
separated. To demonstrate our heat map, we normalized the
data and clustered it into three, four, and five clustersgusin
k-means, perturbed the assignment using the additive expo-
nential method, and plotted the result.

There is some instability with three clusters, but in the
four cluster plot, clusters 1 and 2 exchange a lot of point
mass and are less stable overall than the others, indicating
mutual instability. The effectis more apparent with fiveszlu
ters, where clusters pairs (1, 2) and (3, 5) are mutually un-
stable, signifying too many clusters. Thus we conclude that
of these test cases, three clusters best fits the data (vehich i
correct).

4.2 Scalar stability indices

Within our framework, we can naturally incorporate many of
the scalar stability indices referred in section 1.1. Sigepo
sim (C1,C2) is an index that compares two clusterir@s
andC, and returns a scalar assessment of their similarity
(see section section 1.1). We can then integrate over the
similarity index to obtain an averaged scalar stabilityexd

sim* (¢(K, x)) = /A sim (€(K, x),€" (K, x, A\))dII(A) (9)

We present here two scalar assessments of cluster stabil-
ity. The first is the Hubert-Arabie Adjusted Rand index and
the second is the Variation of Information index, both de-
scribed in section 1.1. These can be expressed in a form that,
based on the probabilistic nature &f allows us to bypass
the integration in equation (9) givelh andA.

Letp; = |C;| /n denote the probability that a datusy
is assigned to clusterin the baseline clustering and clus-
ter j/ under perturbation, and let;;; = m;; andp’,
[>, ¢ijr] /n be as defined in section 2. Then, the integration
allows us to use the asymptotic form of the Hubert-Arabie
Adjusted Rand index (Meila 2007), which becomes:

AR (€(K, x)) :/AAR(%(K,){),%’*(K,X,)\))dH()\)

> Pt = (Zj PJ‘Q) (Zj' p3'2)

tween any of the clusters as denoted by the orange and redMeila’s Variation of Information is:

throughout the diagonal blocks. In the four cluster case,
cluster pairs (1,2) and (2,4) still exchange some point mass
but there’s significant separation between clusters asrshow
by the darker squares. With five clusters, we still have sig-
nificant separation between some of the clusters, but ctuste
4 and 5 exchange significant point mass under perturbation,
indicating mutual instability. Thus we conclude the cotrec
number of clusters is four.

= (10)
L)+ (Zm0%)] - (S50 (S0, ?)
VI (C(K, x)) =— > pjlogp; — > plj logp)y
J J’
e 5

—2) ) pjjlog
N

where all summations are from 1 to IR (C,, C2) ranges
between 0 and 1, with 1 indicating stability, whereas

55’
7
pip;

Figure 3 illustrates the stability heat map on the wine data VZ(Cy,C») is a metric, with 0 indicating a perfect match.
set, analyzed by (Aeberhard, Coomans, & de Vel 1992). The Note that these indices are independent of the ordering on
data set contains the results of a chemical analysis of 178 the cluster labels; thus they provide a way around the label
wines grown in the same region in Italy but derived from matching problem (see section 2.1). For the derivations and
three different cultivars. The features in the data setlae t  interpretation of equations (10) and (11), we refer the eead
guantities of 13 constituents found in each of the threedype to (Hubert & Arabie 1985) and (Meila 2003).



5 \Verification and testing Mean Absolute Deviation of from kyye; 15 Dimensions

2.5

In our tests, we compare a scalar stability index based on -
multiplicat!ve p_erturbation using an exponentia}I priodan - - AR — Exp -
gamma prior with one based on data perturbation using sub- 20| ... AR* — Ga(2, B) -7 1

sampling. In general, our method performs reasonably well.
In higher dimensions, there is evidence that it outperforms
data perturbation approaches, particularly when the dize o
the clusters is small.

We found that the Variation of Information index per-
formed slightly worse than the Hubert-Arabie Adjusted
Rand index, but that may be because it is more difficult to
heuristically compare across different numbers of clgster
Also, while the additive method is best at creating meaning- T T T T T T

Mean Absolute Deviation

ful heat maps, we have not yet found a way to automatically P ithin] TRt

tune the free parameterto allow us to meaningfully com- Mean Absolute Deviation of from ktme, 100 Dimensions

pare the resulting stability indices across differerthus we L ‘ ‘ —

leave that method out of the comparison as well. W — AR* 55 R
To generate the synthetic data, we sampled 100 points || ~~ jz*72ﬁ’2 8

from an equally weighted mixture dfyue 2 (1, 02ininl)

iid

Gaussians, withy 2 a( (0, 0geweed), and the cluster size
at 5 or above. The free parameters are the dimension, the
number of clustery,e, and the ratio of within cluster vari-
ance 62;nn) to between cluster var|anceb2gMeeQ A higher
02uhin/ Otetween Fatio Mmeans the points in the clusters are

more spread out relative to the cluster centers and the prob-
lem becomes more difficult.

Each test consists of runnikgmeans on a sampled data 0.0 e S S 0j5 YR R —

set withk = 2,...,10 centroids. We then perturb the re- tnin et

sultlng cluster models using one of the methods described Mean Absolute DeV|at|on of from ktrue, 500 Dimensions
in section 3 and use equatlon (10) to generate a measure of s ; ; ‘

I = =
@ =) o
T T
N
N
N

Mean Absolute Deviation
N

o
>
N

stability. The estimate dfye, ¥, is the most stable. N AR* 55 j
We also compare our method against data perturbation - - AR - Hop -
b 9 P [N o I AR — Ga(2,3) -

methods using subsampling (see section 1.1). The subsam-
pling method compares, using a stability index, the cluster
ing on the full data against clusterings on data where 30%,
40%, 50%, 60%, and 70% of the original points have been
discarded at random. We then use the median of the final list
of stability indices in estimatingye.

For each given dimension am, i,/ oiewween WE Calcu-
late k on 750 distributions for each Gfrue = 2,...,10. We
then plotted the mean absolute deviationkdfom Kitrue QS 001
a function ofo2,in/Tiemeen @S Shown in Figure 4, for 15,

100, and 500 dimensions. In all three cases, @R, 3) , o

Mean Absolute Deviation
o o = =
> ® o i
T

o
=

o
i

. . : . . 5
the problem becomes significantly difficult. described in the text as a function of increasiBiin/Tietween
T : : AR — SS is the subsampling method andR* — Exp and

The muttiplicative perturbation with thesanma(2, 5) AR — Ga(2,3) use multiplicative perturbation with an exponen-

prior and usingAR" generally performed the best. We i rior and aga(a = 2,3) prior, respectively. Our methods,
suspect that the exponential prior performs worse than the particularly ga (2, 3), outperform the subsampling methods until

gamma(2, 3) prior because the former puts more weight on a@,th,n/abetweenbecomes significantly large and the clusters tend to
mult|pI|cat|ve perturbations close to zero which may false  overlap.

convey stability when all the distances are compared. The
data perturbation approach still tended to be better on the
hardest problems, but only when the points within the clus-
ters were spread out enough to overlap significantly. At that accuracy, even on the easiest problems. This is likely be-

point, it becomes questionable whetfigre accurately re- cause of the small number of data points in many of the
flects the structure of the data and the accuracy of the test is clusters; subsampling throws away information on each tria
debatable. and by doing so may miss smaller clusters. In these cases,

Note that the subsampling method never achieves 100% our method has an advantage as it considers all the available



AR using data subsampling.
3 4 5 6 7 8

9

1

AR with Exponential Prior.
3 4 5 6 7 8

9 10

Table 1: The performance of three methods on 500 dimensional
data drawn from a hierarchical Gaussian mixture model dweestr

in the text. For a giverkwue € {3, ...,9}, we generate 750 dis-
tributions and estimate the number of clusters on each. The e
tries within a row given the resulting distribution & Larger
entries close to the diagonal indicate better performaricehis
test, our methods compare favorably to the data perturbatieth-
ods. When the number of clusters is small, so each clustargs,|
data perturbation is comparable to ours. As the number stals
grows, so the average number of points in a cluster decreages
method begins to greatly outperform data perturbation ousthas
shown by the elements close to the diagonal in the resukipigs.

information.

In higher dimensions, the ratio of any two random dis-
tance measures approaches 1 (Hinneburg, Aggarwal, &
Keim 2000), and this is often referred to as the “curse of di-
mensionality,” as it makes clustering and similar procegur
much more difficult. If the clusters are not well separated,

spurious clusterings cause all three methods to break down.

The two cases we looked at in which all three methods per-
form well enough to be compared are when the clusters are
uniformly Gaussian, as in our generated data, and when the
clusters are separated enough to make them well defined.

In our test of the latter case, our approach signifi-
cantly outperforms data subsampling. We generated clus-
ters using a hierarchical model, where distribution is draw
from a mixture ofa (u, diag (021, 0%, ...,02%,)), Where
02 & Ga(21,1/2) and 72 ® Ga(0.2,1/2). This causes
significant variance in the size and shape of the clusters,
which is what one would expect in real data. We chose these
parameters to maximize the average variance of the clusters
while still keeping the results comparable. Increasing the
average variance beyond this causes the error rate of all the
methods to fall apart and perform little better than random.
Tablel shows the performance of our method as a function
of k andkire.

While the above tests, by themselves, are insufficient to
establish our method for wide use on real data, they show
that it holds potential to match or outperform existing data
perturbation methods. More work is needed to understand
the ways of introducing perturbation and the conditions un-
der which our method performs reliably, and more tests are
needed on more difficult and varied data. However, it is
worthwhile to note that the subsampling method requires
multiple runs of the clustering algorithm, making it more
computationally expensive. Furthermore, the above tesgts u
only the scalar stability indices; the heat map gives addi-
tional information which we ignore here for the purpose of
comparison. In assessing clusterings on real data, we sug-
gest that the heat map is far more useful than scalar stabilit
indices.

6 Conclusion

In this paper, we have proposed a novel and promising
framework based on perturbing the clustering function from
which to develop new methods for cluster validations. We
introduce a new tool for investigating the behavior of ctust
ings under perturbations in the form of a heat map plot of the
averaged assignment matrix and show how existing stability
indices can be incorporated into our framework. We propose
three specific methods and demonstrate that they compare
favorably against existing methods under some conditions.

Future work includes developing the theory around opti-
mally choosing the type of perturbation and the prior, which
would likely give better results than those presented here.
Also, stability data from our method could be used by a
clustering algorithm to improve accuracy. Finally, thettec
nique could naturally be extended to other types of cluster-
ings, such as graph clusterings, or other unsupervisead-lear
ing problems.
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A Multiplicative perturbations under a
Gamma(a =2, ﬂ) prior

Calculating equation (5) for multiplicative perturbatgend
a gamma (o = 2, 3) prior is reasonably straightforward al-
beit messy. We outline the key steps of the derivation here
but omit the tedious algebra. First, let this be in sorted
order, sog; < g2 <---<gg. In practice, this can be accom-
plished by mapping the indices before and remapping them
afterwards. The derivation for equation (7) is identical, e
cept that the prior is different, thg's becomed. + ¢-, and
d's become 1. We can rewrite equation (5) (keeping the prior
general for convenience) as:

%Z/H T(Ae)6((Aedietge) — (Ajdij+g;) —te)dtedA  (12)

4
where d(-) is the Dirac delta function, defined such that
[b d(z—t)dtequalsoneit <z <b and zero otherwise, S0
1{a<b} = [oo 6(b a — t)dt andf ff .I' — t)dt
(Arfken, Weber & Ruby 1996). Usmg th|s

b= [0 I /( (e dighs +5— >)d—wdtzdxj (13)

We set the shape parameteto 2 to make the derivation
tractable while still preserving the desired shape. Bezatis
the comparison, the final result is independent of the scale
parameterd, so we set3 = 1 for convenience. Defining

&ije(N;) = (dij\j + g — g¢)/die for convenience, we have
bij = //)\jeﬂj T fte + &e(ng)] ettt D)
45
X [te + €LJZ( ) > 0] dt(d)\

(14)
/)\ e H[ 1+ &ije(Nj))e *fije(x)]ﬂ[@jz(/\j)Zo] O,

To evaluate thz integral, we can use the division points at
&ije(Nj) =0 < N\ = (g0 — g;)/di; to break it up into at
most K + 1 discrete regions and integrate each separately.
Let hfj = (ge—g;)/d;; denote the division points (recall that

g: is in sorted order), and for convenience, ig}*! = oo.
Note thath?f = 0, so we only need to integrate between the

division pomtshfj, hIFL L hE T to calculatep;:
pmt1 m

dmfZ/”Ae** H 1+ &ije(

We usevy;; = di;jA; + g; to transform the variable of

integration yielding:
_9e | i | [ %505
-3 [

97n+1
>/
Z#J
X exp{ Z 7” -

m=j Y 9m
1 Im+1 d
% i PL"! g —
d” / [ im(7ij) n("Y ])dij_gj _~_%]}

ij — gt
X exp {—Z %}d%j
(=1 ‘

Eijz(/\j)d)\j (15)

Gij

} —d’YLJ

=3 9m

(16)

where P, (y) is a polynomial, equal toP;,(y)
[T5 1 = ge/die +y/die] = >}, pi™ y*. We can eval-
uate the integral by first calculating the coefficiepif§ us-

ing recursion. We then need to integrate the difference of
two polynomials times an exponential, so the result is in the
same form:

DG

L]pim )
dij—g;+y

- Z (q;;m _

k=0

k_—y/D

ye mdy

TQJ'M)yke*y/Dim (17)

whereD;,, = [>)", d;;'] . We can calculatg™ and
integrating successively lower powersf, resulting in an-
other recurrence. Likewise, the division and integratian o

”m can be expressed as a recurrence. Finally, we have

1 G
$ij = o {Tiﬁ,ézj(gj)e Gire=s
ij
+ Z Tije(ge) — Tije—1(ge))e G“] (18)
l=j+1
where
- N gn—g
_ijm k - m — ge
L]m Z ( Ty ) Gie Z die (19)
k=0 m=1
and
A [P - (dim —gm )™ ] 0<k<m,1<m<K
pr=141 m=k=0
0 otherwise
(20)
im__ Dm[(k+1)qiﬁ +p§§"] 0<k<m,1<m<K
% =0 otherwise
(21)
[Dim (k+1) —di+g5] 07
i +Din [(diy =) (k+2)7 %5 + dispics]
Ty = 0<k<m—-1,1<m<K
0 otherwise
(22)
If g1 =92 ="--- =gk, then they can be shifted go = 0

without changing the result. In this caggy, = 0, S0¢;; =
Tigie=1c(0)/dij = (g™ =" — ™) /dyj.

Forthe general case, evaluatmlgm()takesO( ) time
perm for O(K?) time peri, j pa|rand(9(nK3)overaII For
ge = const, we only need;zém K andri? ™= for O(K)
time peri, j pair andO(n k) overall. Note that calculating
pi™ once peti is sufficient.
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