
Approximate Solutions of Interactive POMDPs Using Point Based Value Iteration

Dennis D. Perez
AI Center

University of Georgia
Athens, GA 30602
dperez@uga.edu

Prashant Doshi
Dept. of Computer Science and AI Center

University of Georgia
Athens, GA 30602
pdoshi@cs.uga.edu

Abstract

We develop a point based method for solving finitely nested in-
teractive POMDPs approximately. Analogously to point based
value iteration (PBVI) in POMDPs, we maintain a set of be-
lief points and form value functions composed of only those
value vectors that are optimal at these points. However, as
we focus on multiagent settings, the beliefs are nested and the
computation of the value vectors relies on predicted actions of
others. Consequently, we develop aninteractivegeneraliza-
tion of PBVI applicable to multiagent settings. We bound the
error theoretically and provide empirical results using multiple
domains.

1 Introduction
Interactive partially observable Markov decision processes
(I-POMDPs; (Gmytrasiewicz & Doshi 2005)) are a frame-
work for sequential decision-making in uncertain, multiagent
environments. I-POMDPs facilitate planning and problem-
solving in multiagent settings at an agent’s own individ-
ual level, and in the absence of any centralized controllers
(c.f. (Nair et al. 2003)) and knowledge about the beliefs of
other agents (c.f. (Hansen, Bernstein, & Zilberstein 2004;
Nair et al. 2003)). Analogous to POMDPs (Kaelbling,
Littman, & Cassandra 1998), solutions of I-POMDPs are dis-
proportionately affected not only by growing dimensionali-
ties of the state space (curse of dimensionality), but also by a
large policy space that grows exponentially with the number
of actions and observations (curse of history).

Because I-POMDPs include models of other agents in the
state space as well, the curses of dimensionality and history
are particularly potent. First, if models of others encompass
their beliefs (sometimes calledintentional models), the state
space is nested representing the beliefs over others’ beliefs
and their beliefs over others. Second, as the agents act and
observe, their beliefs evolve over time. Thus, solutions ofI-
POMDPs are affected by not only the curse of history afflict-
ing the modeling agent but also that exhibited by the modeled
agents.

Previous techniques for approximating solutions of finitely
nested I-POMDPs have focused on mitigating the impact of
the curse of dimensionality. One approach is to form a sam-
pled representation of the agent’s prior nested belief. The
samples are then propagated recursively over time using a
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process called the interactive particle filter (Doshi & Gmy-
trasiewicz 2005), that generalizes the particle filter to multi-
agent settings. Because the approach maintains a fixed set of
N samples of the interactive state space, it saves on computa-
tions though at the expense of solution quality. However, the
approach does not address the curse of history and is suited
to solving I-POMDPsonline, when an agent’s prior belief is
known.

In this paper, we focus on offline solutions of finitely
nested I-POMDPs that do not assume a particular initial be-
lief of the agent. In the context of POMDPs, point based so-
lution techniques (for e.g. (Pineau, Gordon, & Thrun 2006;
Spaan & Vlassis 2005)) provide effective offline approxima-
tions that reduce the impact of the curse of history and subse-
quently scale well to relatively large problems. This has mo-
tivated their use in approximating multiagent decision mak-
ing. Szer and Charpillet (Szer & Charpillet 2006) improv-
ing on (Hansen, Bernstein, & Zilberstein 2004) develop a
point based dynamic programming technique to approximate
DEC-POMDPs. Seuken and Zilberstein (Seuken & Zilber-
stein 2007) adopt a memory bounded and point based tech-
nique to compute approximately optimal joint policy trees for
DEC-POMDPs. While its application in DEC - POMDPs is
somewhat straightforward because of the assumption of com-
mon knowledge of initial beliefs of the agents and a focus on
team settings, we confront multiple challenges in doing so:
(i) As point based techniques utilize a set of initial belief
points, we need computational representations of the nested
beliefs in order to select the initial belief points.(ii) Because
there could be infinitely many computable models of other
agents, the state space is prohibitively large. Finally,(iii)
actions of an agent in a multiagent setting depend on others’
actions as well. Therefore, solutions of others’ models are
required which suggests a recursive implementation of the
point based technique.

We provide ways to address these challenges. We show
that computational representations of multiply nested beliefs
are non-trivial and restrictive assumptions are necessaryto
facilitate their representations. In this context, we limit the
interactive state space by including a finite set of initial mod-
els of other agents and those models that are reachable from
the initial set over time. Here, we make the assumption that
the initial beliefs of the agent areabsolutely continuouswith
the true models of all agents as defined in (Doshi & Gmy-
trasiewicz 2006; Kalai & Lehrer 1993). Finally, we present a



generalizedpoint based value iteration(PBVI; (Pineau, Gor-
don, & Thrun 2006)) for finitely nested I-POMDPs that re-
curses down the nesting, approximately solving the models
at each level. We theoretically bound the error and provide
evaluations of the performance of the approach on multiple
problem domains.

2 Finitely Nested I-POMDPs
Interactive POMDPs generalize POMDPs to multiagent set-
tings by including other agents’ models as part of the state
space (Gmytrasiewicz & Doshi 2005). Since other agents
may also reason about others, the interactive state space is
strategically nested; it contains beliefs about other agents’
models and their beliefs about others. For simplicity of pre-
sentation we consider an agent,i, that is interacting with one
other agent,j. A finitely nested I-POMDP of agenti with a
strategy levell is defined as the tuple:

I-POMDPi,l = 〈ISi,l, A, Ti,Ωi, Oi, Ri〉

where: • ISi,l denotes a set of interactive states defined as,
ISi,l = S ×Mj,l−1, whereMj,l−1 = {Θj,l−1 ∪ SMj}, for
l ≥ 1, andISi,0 = S, whereS is the set of states of the
physical environment.Θj,l−1 is the set of computablein-
tentional modelsof agentj: θj,l−1 = 〈bj,l−1, θ̂j〉 where the
frame, θ̂j = 〈A, Ωj , Tj , Oj , Rj , OCj〉. Here,j is Bayes
rational andOCj is j’s optimality criterion. SMj is the set
of subintentional models ofj. Simple examples of subinten-
tional models include a no-information model and a fictitious
play model (Fudenberg & Levine 1998), both of which are
history independent. In this paper, we focus on intentional
models only. We give a recursive bottom-up construction of
the interactive state space:
ISi,0 = S, Θj,0 = {〈bj,0, θ̂j〉 | bj,0 ∈ ∆(ISj,0)}

ISi,1 = S × Θj,0, Θj,1 = {〈bj,1, θ̂j〉 | bj,1 ∈ ∆(ISj,1)}
...

...
ISi,l = S × Θj,l−1, Θj,l = {〈bj,l, θ̂j〉 | bj,l ∈ ∆(ISj,l)}
Similar formulations of nested spaces have appeared

in (Aumann 1999; Brandenburger & Dekel 1993).
• A = Ai × Aj is the set of joint actions of all agents in the
environment;• Ti : S ×A× S → [0, 1], describes the effect
of the joint actions on the physical states of the environment;
• Ωi is the set of observations of agenti; • Oi : S × A ×
Ωi → [0, 1] gives the likelihood of the observations given the
physical state and joint action;•Ri : ISi×A→ R describes
agenti’s preferences over its interactive states. Usually only
the physical states will matter.

Agent i’s policy is the mapping,Ω∗
i → ∆(Ai), whereΩ∗

i

is the set of all observation histories of agenti. Since belief
over the interactive states forms a sufficient statistic (Gmy-
trasiewicz & Doshi 2005), the policy can also be represented
as a mapping from the set of all beliefs of agenti to a distri-
bution over its actions,∆(ISi)→ ∆(Ai).

2.1 Belief Update
Analogous to POMDPs, an agent within the I-POMDP
framework updates its belief as it acts and observes. First,
since the state of the physical environment depends on the ac-
tions of both agents,i’s prediction of how the physical state
changes has to be made based on its prediction ofj’s actions.

Second, changes inj’s models have to be included ini’s be-
lief update. Specifically, asj is intentional an update ofj’s
beliefs due to its action and observation has to be included.In
other words,i has to update its belief based on its prediction
of whatj would observe and howj would update its belief.
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where β is the normalizing constant,δD is 1 if its argu-
ment is 0 otherwise it is 0,Pr(at−1

j |θt−1

j,l−1
) is the probability

thatat−1
j is Bayes rational for the agent described by model

θt−1

j,l−1
, andSE(·) is an abbreviation for the belief update.

If agentj is modeled as an I-POMDP, theni’s belief update
invokes j’s belief update (via the termSE

θ̂t
j

(bt−1

j,l−1
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j ,

ot
j)), which in turn invokesi’s belief update and so on. This

recursion in belief nesting bottoms out at the0th level. At this
level, the belief update of the agent reduces to a POMDP be-
lief update.1 For illustrations of the belief update, additional
details on I-POMDPs and how they compare with other mul-
tiagent frameworks, see (Gmytrasiewicz & Doshi 2005).

2.2 Value Iteration
Each belief state in a finitely nested I-POMDP has an associ-
ated value reflecting the maximum payoff the agent can ex-
pect in this belief state:

U t(〈bi,l, θ̂i〉) = max
ai∈Ai

{ ∑
is∈ISi,l

ERi(is, ai)bi,l(is)+

γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)U
t+1(〈SE

θ̂i
(bi,l, ai, oi), θ̂i〉)

} (2)

where, ERi(is, ai) =
∑

aj
Ri(is, ai, aj)Pr(aj |θj,l−1).

Eq. 2 is a basis for value iteration in I-POMDPs.
Agent i’s optimal action,a∗

i , for the case of finite horizon
with discounting, is an element of the set of optimal actions
for the belief state,OPT (θi,l), defined as:

OPT (〈bi,l, θ̂i〉) = argmax
ai∈Ai

{ ∑
is∈ISi,l

ERi(is, ai)bi,l(is)

+γ
∑

oi∈Ωi

Pr(oi|ai, bi,l)U
t+1(〈SE

θ̂i
(bi,l, ai, oi), θ̂i〉)

}

2.3 Exact Solution
Notice that the value function,U t, mapsΘi,l → R. Because
Θi,l is a continuous space (countably infinite if we limit to
computable beliefs), we cannot iterate over all the models of
i to compute their values. Instead, analogous to POMDPs,
we may decompose the value function into its components:

U t(〈bi,l, θ̂i〉) =
∑

is∈ISi,l

αt(is)× bi,l(is) (3)

1The 0th level model is a POMDP: Other agent’s actions are
treated as exogenous events and folded into the T, O, and R func-
tions.



where,

αt(is) = max
ai∈Ai
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The proof for Eq. 3 is given in the Appendix of (Gmy-
trasiewicz & Doshi 2005). For small problems and finite
sets of models, we may computeαt (called the alpha
vector) exactly, using methods that are analogous to
those of POMDPs (Cassandra, Littman, & Zhang 1997;
Monahan 1982). We outline a simple way below:

LetVt+1 be the set of timet + 1 alpha vectors, then∀ai ∈
Ai, andoi ∈ Ωi:

Γai,∗ ← αai,∗(is) =
∑

aj∈Aj

R(s, ai, aj)Pr(aj |θj,l−1) (4)
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Thus we generateO(|Ai||Ωi|) sets of|Vt+1| vectors each.
Each vector is of length|ISi,l|. Next, we formulateΓai by
taking the cross-sum of the previously computed sets of alpha
vectors:

Γai ← Γai,∗ ⊕ Γai,o
1

i ⊕ Γai,o
2

i ⊕ · · · ⊕ Γai,o
|Ωi|

i (6)

We may generateO(|Ai||Vt+1||Ωi|) many distinct interme-
diate alpha vectors, and we utilize a linear program (LP) to
pick those that are optimal for at least one belief point.

Vt = prune
αt

(
⋃

ai

Γai)

Notice that Eqs. 4 and 5 requirePr(aj |θj,l−1), which in-
volves solving (exactly) the levell − 1 intentional models of
agentj. Thus, we carry out the above mentioned procedure
recursively for solving models at all levels.

3 Computational Representation of Nested
Beliefs

While Section 2 presents a mathematical definition of nested
belief structures, their computational representations are also
needed to facilitate implementations utilizing nested beliefs.
However, as we show next, developing these representations
is not a trivial task.

3.1 Complexity of Representation
To promote understanding, we assume thatj’s frame is
known and agenti is uncertain about the physical states and
j’s beliefs only. We explore the representations bottom-up.

Agent i’s level 0 belief, bi,0 ∈ ∆(S), is a vector of

probabilities over each physical state:bi,0
def
= 〈 pi,0(s1),

pi,0(s2),. . ., pi,0(s|S|) 〉. Since belief is a probability dis-

tribution,
∑|S|

q=1
pi,0(sq) = 1. We refer to this constraint

as the simplex constraint. As we may write,pi,0(s|S|) =

1−
∑|S|−1

q=1
pi,0(sq), subsequently, only|S| − 1 probabilities

are needed to specify a level 0 belief.
Agent i’s level 1 belief, bi,1 ∈ ∆(S × Θj,0), may be

rewritten as,bi,1(s, θj,0) = pi,1(s)pi,1(θj,0|s). Therefore,i’s

level 1 belief is a vector:bi,1
def
= 〈(pi,1(s1),pi,1(Θj,0|s1)),

(pi,1(s2),pi,1(Θj,0|s2)), . . ., (pi,1(s|S|),pi,1(Θj,0|s|S|))〉.
Here, the discrete distribution,〈 pi,1(s1), pi,1(s2),. . .,
pi,1(s|S|) 〉 satisfies the simplex constraint, and each
pi,1(Θj,0|sq) is a single density function overj’s level 0
beliefs.2 We note thatpi,1(Θj,0|sq) integrates to 1 over all
level 0 models ofj.

An example representation of a level 1 belief is to model
each density,pi,1(Θj,0|sq), as a weighted mixture ofKq

Gaussians. If the frame is known,pi,1(bj,0|sq) =
∑Kq

k=1
wk

N (µk,q
i,1 ,Σk,q

i,1 ) (bj,0), wherebj,0 is a vector of probabilities

as defined previously,µk,q
i,1 andΣk,q

i,1 are the mean and covari-
ance respectively, of thekth Gaussian component of the mix-
ture. The representation is general because for a sufficiently
largeKq, Gaussian mixtures approximate any density to an
arbitrary accuracy (McLachlan & Basford 1988).

Agent i’s second level belief, bi,2 ∈ ∆(S ×
Θj,1), analogous to level 1 beliefs, is a vector:bi,2

def
= 〈 (pi,2(s1), pi,2(Θj,1|s1)), (pi,2(s2), pi,2(Θj,1|s2)),. . . ,
(pi,2(s|S|), pi,2(Θj,1|s|S|)) 〉. In comparison to level 0 and
level 1 beliefs, representing doubly-nested beliefs and beliefs
with deeper nestings is difficult. This is because these are dis-
tributions over density functions whose representations need
not be finite. For example, letj’s singly-nested belief den-
sities be represented using a mixture of Gaussians as shown
before. Then,i’s doubly nested belief overj’s densities is in
part a vector of normalized mathematical functions of vari-
ables where the variables are the parameters of lower-level
densities. Because the lower-level densities are Gaussian
mixtures which could haveany number of components and
therefore an arbitrary number of means and covariances, the
functions that represent doubly nested beliefs may have an
infinite number of variables. Thus computational representa-
tions of i’s level 2 beliefs are not trivial. We formalize this
observation using Proposition 1, which states that multiply-
nested beliefs are necessarily partial functions that failto as-
sign a probability to some elements (lower level beliefs) in
their domains.

Proposition 1. Agenti’s multiply nested belief,bi,l, l ≥ 2, is
strictly a partial (Turing-)recursive function.

Proof. We briefly revisit the definition of nested beliefs:bi,l

∈ ∆(ISi,l) = ∆(S × Θj,l−1). For simplicity, we assume
that j’s frame is known (the proof is not contingent on this
assumption). As thebasiscase, letl = 2, thenbi,2 ∈ ∆(S ×
〈Bj,1〉). Because the physical state space is discrete,bi,2 may
be represented, in part using a collection of density functions
onj’s beliefs, one for each discrete state,pi,2(bj,1|sq), where
bj,1 ∈ Bj,1 – the set ofj’s level 1 beliefs. Notice that,bj,1

2If j’s frame is not known,pi,1(Θj,0|sq) is a collection of den-
sities overj’s level 0 beliefs, one for each frame.



being singly-nested, is itself, in part, a collection of densities
overj’s level 0 beliefs, one for each state.

Recall from Section 2 that the models and therefore the
belief density functions are assumed computable. Letx
be the program of length in bits,len(x), that encodes, say
pj,1(bj,0|s1), in the languageg. Then define thecomplex-
ity of the density function,pj,1(bj,0|s1), as: Cg(pj,1) =
min {len(x) : g(x) = pj,1(·|s1)}. Cg(·) is the minimum
length program in languageg that computes the argument.3

We observe thatlen(x) is proportional to the number of pa-
rameters that describepj,1(·|s1). Because the number of pa-
rameters of a density need not be bounded,len(x) and con-
sequently the complexity of the density may not be finite.
Intuitively, this is equivalent to saying that the density could
have “any shape”.

Assume, by way of contradiction, that the level 2 density
function,pi,2(bj,1|s1) is a total recursive function. Construct
a Turing machine,T , that computes it. Becausepi,2 is total,
T will halt on all inputs. Specifically,T will read the set
of symbols on its input tape that describe the level 1 density
function (the program,x), and once it has finished reading it
halts and leaves a number between 0 and 1 on the output tape.
This number is the output of the density function encoded
by T . Note thatT does not execute the input programx,
but simply parses it to enable identification. ThusT is not
a universal Turing machine. As we mentioned previously,
the minimum length program (and hence the complexity) that
encodes the level 1 density function may be infinite. Thus the
size of the set of symbols on the input tape ofT , len(x), may
be infinite, andT may not halt. But this is a contradiction.
Thus,pi,2 is a partial recursive function.

The argument may be extended inductively to further lev-
els of nesting.

As multiply-nested beliefs in their general form are par-
tial recursive functions that are not defined for every possible
lower level belief in their domains, restrictions on the com-
plexity of nested beliefs are needed to allow for computabil-
ity and so that they are well-defined. One sufficient way is to
focus our attention on a limited set of other’s models.

3.2 Absolute Continuity Condition

Let Θ̃j,0 be a finite set of j’s computable level 0 mod-
els. Then, defineĨSi,1 = S × Θ̃j,0 and agent
i’s belief, b̃i,1 ∈ ∆(ĨSi,1). As we mentioned be-
fore, i’s level 1 belief may be rewritten as:̃bi,1(ĩs) =

pi,1(s)pi,1(θ̃j,0|s). Therefore,i’s level 1 belief is a vector:

b̃i,1
def
= 〈(pi,1(s1),pi,1(Θ̃j,0|s1)), (pi,1(s2),pi,1(Θ̃j,0|s2)),. . .,

(pi,1(s|S|),pi,1(Θ̃j,0|s|S|)) 〉. Here, the discrete distribution,
〈 pi,1(s1), pi,1(s2),. . .,pi,1(s|S|) 〉 satisfies the simplex con-
straint. Additionally, eachpi,1(Θ̃j,0|s1) is also a discrete dis-
tribution that satisfies the simplex constraint. We generalize
to level l in a straightforward manner: Let̃Θj,l−1 be a finite
set ofj’s computable levell−1 models. Then, definẽISi,l =

3Note that the complexity,Cg, is within a constant of the Kol-
mogorov complexity (Li & Vitanyi 1997) of the density function,
pj,1.

S × Θ̃j,l−1 and agenti’s belief, b̃i,l ∈ ∆(ĨSi,l). Here, anal-

ogous to a level 1 belief,bi,l
def
= 〈 (pi,l(s1), pi,l(Θ̃j,l−1|s1)),

(pi,l(s2), pi,l(Θ̃j,l−1|s2)),. . .,(pi,l(s|S|),
pi,l(Θ̃j,l−1|s|S|)) 〉.

Notice thati’s belief over the physical states and other’s
candidate models, together with its perfect information about
its own model induces a predictive probability distribution
over the joint future observations in the interaction (Doshi &
Gmytrasiewicz 2006). Because we limit the support ofi’s
belief to a finite set of models, the actual sequence of obser-
vations may not proceed along a path that is assigned some
non-zero predictive probability byi’s belief. In this case,i’s
observations may contradict its belief and a Bayesian belief
update may not be possible.

Therefore, it is desirable that agenti’s belief, b̃i,l, as-
sign a non-zero probability to each potentially realizableob-
servation path in the interaction – this condition has also
been called the truth compatibility condition (Kalai & Lehrer
1993). We formalize this condition mathematically using the
notion ofabsolute continuityof two probability measures:

Definition 1 (Absolute Continuity). A probability measure
p1 is absolutely continuous withp2, denoted asp1 � p2, if
p2(E) = 0 impliesp1(E) = 0, for any measurable setE.

In order to formally define the condition, letρ0 be the true
distribution over the possible observation paths induced by
perfectly knowing the true models ofi andj. Let ρbi,l

be the
distribution over the observation paths induced byi’s initial
belief, b̃i,l. Then,

Definition 2 (Absolute Continuity Condition (ACC)). ACC
holds for an agent, sayi, if ρ0 � ρbi,l

.

Of course, a sufficient but not necessary way to satisfy the
ACC is for agenti to include each possible model ofj in
the support of its belief. However, as Proposition 1 precludes
this, we select a finite set ofj’s candidate models with the
partial (domain) knowledge that the true model ofj is one of
them.

4 Interactive PBVI
Because I-POMDPs include possible models of other agents
that are solved, their solution complexity additionally suf-
fers from the curse of history that afflicts the modeled agents.
This curse manifests itself in the|Aj ||V

t+1
j ||Ωj | alpha vectors

that are generated at timet (Eq. 5) and the subsequent appli-
cation of LPs to select the optimal vectors, to solve the mod-
els of agentj. Point based approaches (for e.g., see (Pineau,
Gordon, & Thrun 2006; Spaan & Vlassis 2005) for POMDPs,
and (Szer & Charpillet 2006) for DEC-POMDPs) utilize a fi-
nite set of belief points to decide which alpha vectors to re-
tain, and thereby do not utilize the LPs.

4.1 BoundedIS and Initial Beliefs
As we mentioned in Section 3, we limit the space ofj’s
candidate initial models to a finite set,̃Θj,l−1. However,
because the models ofj may grow as it acts and observes,
agenti must track these models over time in order to act
rationally. LetReach(Θ̃j,l−1,H) be the set of levell − 1



models thatj could have in the course ofH steps. Note
that Reach(Θ̃j,l−1, 0) = Θ̃j,l−1. In computingReach(·),
we repeatedly updatej’s beliefs in the models contained in
Θ̃j,l−1 using Eq. 1. We define a bounded interactive state
space as follows:
ĨSi,0 = S, Θ̃j,0 = {〈b̃j,0, θ̂j〉 | b̃j,0 ∈ ∆(ĨSj,0)}

ĨSi,1 = S × Reach(Θ̃j,0, H), Θ̃j,1 = {〈b̃j,1, θ̂j〉 | b̃j,1 ∈ ∆(ĨSj,1)}
...

...
ĨSi,l = S × Reach(Θ̃j,l−1, H), Θ̃j,l = {〈b̃j,l, θ̂j〉 | b̃j,l ∈ ∆(ĨSj,l)}

For each level of the nesting, we select an initial set of
beliefs for the corresponding agent randomly. We show the
procedure for performing this selection in Fig. 1.

RANDOM-SELECT(Strategy level:l ≥ 0, ĨSk,l, # beliefs:N )

1: if l = 0 then
2: for n from 1 toN do
3: Select a distribution,̃bk,0 ∈ ∆(S), randomly

4: B̃N
k,0

∪
← b̃k,0

5: end for
6: else
7: Call RANDOM-SELECT (l − 1, ĨS−k,l−1, N )
8: for n from 1 toN do
9: Select a distribution,pk,l(S) ∈ ∆(S), randomly

10: for all s ∈ S do
11: Select a distribution, pk,l(Θ̃−k,l−1|s) ∈

∆(Θ̃−k,l−1), randomly
12: end for
13: for all s ∈ S, θ̃−k,l−1 ∈ Θ̃−k,l−1 do
14: b̃k,l(s, θ̃−k,l−1)← pk,l(s)× pk,l(Θ̃−k,l−1|s)
15: end for
16: Normalizeb̃k,l, B̃N

k,l

∪
← b̃k,l

17: end for
18: end if
19: Return the belief sets,̃BN

k,l, . . . , B̃
N
k,0

Figure 1: A recursive algorithm for randomly selecting an
initial set of N beliefs at all levels of the nesting. Here,k
(and−k) assumes agenti (andj) or j (andi) as appropriate.

4.2 Point Based Back Projections
Given the bounded interactive state space defined previously,
Eqs. 4 and 5 may be rewritten.∀ai ∈ Ai andoi ∈ Ωi:

Γ̃ai,∗ ← αai,∗(ĩs) =
∑

aj∈Aj

R(s, ai, aj)Pr(aj |θ̃j,l−1) (7)

Γ̃ai,oi
∪
← αai,oi(ĩs) = γ

∑

ĩs
′

∑
aj

Pr(aj |θ̃j,l−1)Ti(s, ai, aj , s
′)

Oi(s
′, ai, aj , oi)

∑
oj

Oj(s
′, ai, aj , oj)δD(SE

θ̂j
(b̃j,l−1, aj , oj)

−b̃′j,l−1) αt+1(ĩs
′
) ∀αt+1 ∈ Vt+1

(8)
whereĩs, ĩs

′
∈ ĨSi,l andĩs = 〈s, θ̃j,l−1〉.

Let B̃i,l be a finite set of levell belief points at some time
t. As we seek alpha vectors of agenti that are optimal at the

beliefs inB̃i,l, we may simplify the cross-sum computations
shown in Eq. 6. In particular, we need not consider all the
vectors in a set, sayΓai,o

1

i , but only those that are optimal at
some belief point,̃bi,l ∈ B̃i,l. Formally,

Γ̃ai ← Γ̃ai,∗ ⊕
oi∈Ωi

argmax
Γ̃ai,oi

(αai,oi · b̃i,l) ∀b̃i,l ∈ B̃i,l (9)

We again utilizeB̃i,l to finally select the alpha vectors that
form the setVt:

Vt ← argmax
αt∈

⋃
ai

Γai

(αt · b̃i,l) ∀b̃i,l ∈ B̃i,l

Notice that in Eq. 9, we generate at mostO(|Ai||Vt+1||Ωi|)
alpha vectors, typically less, and do not require a LP to select
the optimal ones. The setVt contains unique alpha vectors
that are optimal for at least one of the belief points inB̃i,l.
Hence,Vt contains at most|B̃i,l| many alpha vectors, typi-
cally less in practice. Because the number of alpha vectors
depends on the set of belief points, we may limit the latter to
a constant size.

What remains is how we compute the termPr(aj |θ̃j,l−1)
in Eqs. 7 and 8. We may solve agentj’s I-POMDP of level
l − 1 or POMDP of level 0 in an analogous manner using
a finite set of belief points ofj. Consequently, we recurse
through the levels of nesting, utilizing a pre-computed finite
set of belief points at each level to generate the alpha vectors
that are optimal at those points.

4.3 Top Down Expansion of Belief Points
We point out three issues that may guide the expansions of
finite sets of belief points for the agents. First, rather than
being distributed over the entire space, an agent’s beliefsof-
ten follows certain trajectories. Thus, selecting belief points
that lie on the trajectories may result in solutions that offer
good performance quality. Second, selecting a belief point
that is in close spatial proximity to another may not result in
a new alpha vector, thereby making the belief point redun-
dant. Finally, in comparison to single agent settings, generat-
ing beliefs in a setting populated by other agents may require
predicting their actions as well.

In the context of POMDPs, Spaan and Vlassis (Spaan &
Vlassis 2005) utilize a fixed set of beliefs obtained by ran-
domly exploring the environment. During the back projec-
tions, they progressively filter out the belief points consider-
ing only those for which the previously back projected alpha
vectors are not a better policy. In (James, Samples, & Dolgov
2007), James et al. incrementally introduce belief points that
have the potential of providing the largest gain, where gainis
the difference between the current value of the policy at that
point as obtained from previously selected alpha vectors and
a minimal upper bound. However, as the authors conclude,
finding the minimal upper bound is computationally expen-
sive and for large belief spaces (as is the case in multiagent
settings) may offset the runtime savings provided by point
based approaches.

We utilize two approaches to expand the sets of belief
points over time that are used to select the alpha vectors:
• Stochastic trajectory simulation For each belief in a be-
lief set,B̃i,l, we sample a physical state and the other agent’s



model. We then uniformly samplei’s action,ai, and in com-
bination with the sampled physical state andj’s action ob-
tained from solvingj’s model, we sample the next physical
state using the transition function. Given the updated phys-
ical state and joint actions, we sample an observation ofi,
oi, from the observation function. Agenti’s belief is then up-
dated given its action,ai, and observation,oi, using the belief
update (Eq. 1).
• Error minimization The approximation error in point
based approaches, in part, depends on the density of the set of
belief points. We prefer to generate a new belief point,bt+1

i,l ,
such that the optimal alpha vector at that point is furthest in
value from the alpha vector at an existing belief that is the
closest to the generated belief. This is because in the absence
of such a point, a large error would be incurred at that point.
As the optimal alpha vector atbt+1

i,l is not known, we may

utilize the maximum (or minimum) value,Rmax

1−γ
for eachis,

in its place. Consequently, we first select a belief point,bt
i,l

from the setB̃i,l, which when updated will result inbt+1

i,l .
Similar approaches were used in (Pineau, Gordon, &

Thrun 2006) for expanding beliefs in point based approaches
in the context of single agent POMDPs, where they demon-
strated good results.4 For each of the expansion techniques,
beliefs at all strategy levels are recursively generated inan
analogous manner.

5 Algorithm
We show the main procedure for performing the interactive
PBVI (I-PBVI) in Fig. 2. We generate the initial belief points,
〈B̃N

k,l, B̃N
−k,l−1,. . ., B̃N

k,0〉, using the RANDOM-SELECT al-
gorithm in Fig. 1, though other ways, for example utilizing
prior knowledge about probable beliefs, may be used. If the I-
POMDP is not strategically nested, we back project the time
t + 1 vectors using a standard backup technique for single
agent POMDPs, as given in, say (Pineau, Gordon, & Thrun
2006). However, if the I-POMDP is nested, a more sophisti-
cated approach is needed for the backup (lines 2-7). The al-
pha vectors at timeH (horizon 1) are initialized to their lower
bounds,Rmin

1−γ
(line 1). This is sufficient to ensure that the

repeated back projections will gradually improve the value
function. Though in Fig. 2, we recursively expand the set
of beliefs,〈 B̃N

k,l, B̃N
−k,l−1,. . .,B̃N

k,0 〉, after each backup, we
may reduce our computational overhead by performing the
expansions more sparsely. Here, we utilize the techniques in
Section 4.3 for carrying out the expansions (lines 8-9).

We show the procedure for back projecting the vectors for
the case where the I-POMDP is nested to a levell > 0, in
Fig. 3. In a nutshell, we utilize the steps outlined in Sec-
tion 4.2 to identify the projected alpha vectors that are opti-
mal at the belief points in the set,̃Bk,l (lines 2-17). However,
in doing so we need to predict the other agent’s actions as
well which is obtained by solving its models. Therefore, in
performing the backup, we descend through the nesting solv-
ing the models at each level by recursively performing the

4For POMDPs, the error minimization showed the best perfor-
mance (Pineau, Gordon, & Thrun 2006), improving on (Spaan &
Vlassis 2005) as well.

I-PBVI (Initial beliefs: 〈B̃N
k,l, B̃

N
−k,l−1, . . . , B̃

N
k,0〉, Hori-

zons:H > 0, Strategy level:l ≥ 0)

1: Γ̃H ← INITIAL -ALPHAVECTORS()
2: for t← H − 1 to 0 do
3: if l = 0 then
4: Γ̃t ← PBVI BACKUP(B̃N

k,0, Γ̃t+1, H − t)
5: else
6: Γ̃t ← I-PBVI BACKUP(B̃N

k,l, . . . , B̃
N
k,0, Γ̃t+1, H−

t, l)
7: end if
8: Expand the previous set of beliefs at all levels using

techniques from Section 4.3
9: Add the expanded beliefs to the existing sets

10: end for
11: return Γ̃0

Figure 2: The interactive PBVI procedure for generating the
alpha vectors at horizon,H. Note that whenl = 0, the vector
projection is analogous to that for POMDPs. Here,k (and
−k) assumes agenti (andj) or j (andi) as appropriate.

PBVI (note the recursive invocation of I-PBVI in line 1).

I-PBVI BACKUP (〈B̃k,l, . . . , B̃k,0〉, Γ̃t+1

k , h, l)

1: Γ̃t
−k ← I-PBVI (〈B̃−k,l−1, . . . , B̃k,0〉, h, l − 1)

2: for all ak ∈ Ak do
3: Computeαai,∗

k (Eq. 7) wherePr(a−k|θ̃−k,l−1) ←

GETACTION (θ̃−k,l−1, Γ̃t+1

−k ) and addαai,∗
k to Γ̃ai,∗

4: for all ok ∈ Ωk do
5: Computeαai,oi

k (Eq. 8), wherePr(a−k|θ̃−k,l−1)←

GETACTION (θ̃−k,l−1, Γ̃t+1

−k ), addαai,oi

k to Γ̃ai,oi

6: end for
7: end for
8: for all b̃k,l ∈ B̃k,l do
9: Computeαai

k (Eq. 9) and addαai

k to Γ̃ai

10: end for
11: Γ̃t ←

⋃
ai

Γ̃ai

12: for all b̃k,l ∈ B̃k,l do
13: α∗

k ← argmax
αk∈Γ̃n

αk · b̃i,l

14: if α∗
k /∈ Γ̃t

∗ then
15: Add α∗

k to Γ̃t
∗

16: end if
17: end for
18: return Γ̃t

∗

Figure 3: Procedure for backing up the alpha vectors when
strategy levell > 0. Note the recursive call to I-PBVI on
line 1 for solving the models of the other agent.

6 Computational Savings and
Error Bounds

If the strategy level is 0, the I-POMDPi collapses into a
POMDP and we generate in the worst caseO(|Ai||V

t+1||Ωi|)



many alpha vectors at timet in order to solve the POMDP
exactly. LetMj,l−1 = Reach(Θ̃j,l−1,H). We first consider
solving the I-POMDP ofi at level 1. Because we include
|Mj,0| many models ofj in the state space, we need obtain
|Mj,0| alpha vectors assumingj’s frame is known. These
are used in solving the I-POMDP ofi, which in the worst
case generatesO(|Ai||Vt+1||Ωi|) vectors.5 Thus, a total of
O(|Ai||V

t+1||Ωi|+|Mj,0|) alpha vectors are obtained at level
1. Generalizing to levell and assuming, for the sake of sim-
plicity, that the same number of models of the other agent are
included at any level,|M |, we needO(|Ai||V

t+1||Ωi|+|M |l)
alpha vectors to solve the I-POMDPi,l exactly. In the context
of the I-PBVI, if at mostN belief points are used at any level,
the approximate solution of a level 0 I-POMDP generates
O(N) alpha vectors. For level 1, because solutions of|M |
models are obtained approximately usingN belief points,
we need obtain onlyO(N) vectors forj and anotherO(N)
vectors to solve the I-POMDP ofi at level 1 approximately.
Generalizing to levell, we generate at mostO(N(l + 1))
many alpha vectors. For the case whereN << |M |, signifi-
cant computational savings are obtained. Of course, for more
than two agents, the number of alpha vectors are exponential
in the number of agents.

The loss in optimality or error due to approximately solv-
ing the I-POMDP using I-PBVI is due to two reasons:(i) The
alpha vectors that are optimal at selected belief points maybe
suboptimal at other points; and(ii) Models of the other agent
are solved approximately as well. We begin a characteriza-
tion of the error by noting that Eq. 3 may be rewritten as:

αt(is) =
∑

aj∈Aj
Pr(aj |θj,l−1)× max

ai∈Ai

{
Ri(s, ai, aj)+

γ
∑
oi

∑
is′∈ISi,l

{[
Ti(s, ai, aj , s

′)Oi(s
′, ai, aj , oi)

∑
oj

Oj(s
′, ai,

aj , oj)δD(SE
θ̂j

(bj,l−1, aj , oj)− b′j,l−1)

]}
αt+1(is′)

}

= Pr(aj |θj,l−1) · α
t
aj

(10)
Let b̃′i,l be the belief point where the maximum error occurs,
andα′′ be the exact alpha vector that is optimal at this belief
point. Let α be the approximate vector that is instead uti-
lized atb̃′i,l for computing the policy. Note that in usingα the
solution suffers from both the sources of error mentioned pre-
viously, whileα′′ induces no error. Letα′ be optimal at̃b′i,l
while still exhibiting an error due to the approximate solution
of j’s models. We may define the worst case error as:

E = α′′ · b̃′i,l − α · b̃′i,l
= α′′ · b̃′i,l − α · b̃′i,l + (α′ · b̃′i,l − α′ · b̃′i,l)

= (α′′ · b̃′i,l − α′ · b̃′i,l) + (α′ · b̃′i,l − α · b̃′i,l)

(11)

We first focus on the second term,α′ · b̃′i,l − α · b̃′i,l. Here,
the error is only due to the limited set of belief points, as
both α′ andα utilize the same approximate solution ofj’s
models. DefinedB̃ as the largest of the distances between

5Note that these vectors are of size|ĨSi,l| compared to size|S|
of the vectors for POMDPs.

the pruned belief,̃b′i,l, and the closest belief,̃bi,l, among the

selected points:dB̃ = maxb̃′
i,l

∈Mi,l
minb̃i,l∈B̃i,l

|b̃′i,l − b̃i,l|.

Note thatdB̃ reflects the density of the selected belief points
within the belief simplex. The derivation of the error for this
case proceeds in a manner analogous to that of PBVI (Pineau,
Gordon, & Thrun 2006). Subsequently, we get the following
worst-case error bound:

α′ · b̃′i,l − α · b̃′i,l ≤
Rmax

i −Rmin
i

1− γ
dB̃

Next, we turn our attention to the first term,α′′ · b̃′i,l −

α′ · b̃′i,l, of Eq. 11. This term represents the error due to the
approximate solution of the other agent’s models obtained by
using PBVI recursively. We may write it as:

α′′ · b̃′i,l − α′ · b̃′i,l = b̃′i,l · (α
′′ − α′)

= b̃′i,l · (α
′′
aj
· Pr(aj |·)− α′′

aj
· Pr′(aj |·)) (Using Eq. 10)

= b̃′i,l · (α
′′
aj
· (Pr(aj |·)− Pr′(aj |·)))

The inner dot product is overj’s actions. Pr′(aj |·) rep-
resents the suboptimal probability due to the approximation.
Consider the case wherePr′(aj |·) prescribes an action,a′

j ,
different from that byPr(aj |·). Then the worst error is

loosely bounded by,α′′
aj
− α′′

a′
j
≤

Rmax
i −Rmin

j

1−γ
. Therefore,

α′′ · b̃′i,l − α′ · b̃′i,l ≤ b̃′i,l ·
Rmax

i −Rmin
i

1−γ
=

Rmax
i −Rmin

i

1−γ

Thus, although the error due to pruning the belief points
is bounded and depends on the density of the selected belief
points, we are unable to usefully bound the error due to ap-
proximately solving other’s models.

7 Performance Evaluation
We implemented the algorithm in Section 5 and evaluated
its performance on the well known multiagenttiger prob-
lem (Gmytrasiewicz & Doshi 2005) and a multiagent version
of the machine maintenance (MM) problem (Smallwood &
Sondik 1973).

Although the two problems have a small physical state
space (tiger: 2 physical states, MM: 3 physical states), the
interactive state space,ISi,l, is large because we include the
models of the other agent as well (for example, MM: approx.
60 interactive states). For both the problems, we provide the
time taken in reaching a particular performance in terms of
the rewards gathered by agenti. The time consumed is a
function of the number of belief points used during I-PBVI,
the horizons of the policy and the number ofj’s models. We
gradually increased the number of belief points, horizons and
models and simulated the performance of the resulting poli-
cies over 10 trials with 50 runs each. In each trial, we selected
a different initial belief of agenti, and sampled the starting
state and belief ofj from this belief. In solving the I-POMDP
of agenti, j’s models must be solved as well. We compare
the results across both the expansion strategies mentionedin
Section 4.3.

We show the level 1 and 2 plots for the two problems in
Figs. 4(a) and(b), respectively. Lower values on y-axis in-
dicate better performance. Notice that for level 1 the error
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Figure 4: Level 1 (j’s models are POMDPs) and level 2 (j’s models are level 1 I-POMDPs) plot of time consumed in achieving a
desired performance. Note that the y-axis is in log scale. The I-PBVI significantly improves on the I-PF, a previous approximation
technique for I-POMDPs. All experiments are run on a Linux platform with dual processor Xeon 3.4GHz with 4GB memory.

minimization expansion approach (denoted as IPBVI+Min)
performs better than the approach of using the stochastic
trajectory (denoted as IPBVI+Stoch) to expand the belief
points, in both domains. Specifically, IPBVI+Min takes less
time in providing an identical performance as when the IP-
BVI+Stoch is used. However, the distinction is less evidentat
level 2 where the greater computations incurred in using the
minimization approach assume significance. These observa-
tions are analogous to the mixed performance of the different
expansion techniques in POMDPs (Pineau, Gordon, & Thrun
2006). One way to assess the impact of deeper modeling is
to measure the average rewards obtained byi across levels
for the same number of belief points. Our experiments do
not reveal a significant overall improvement when agenti’s
beliefs are doubly nested, although level 2 solutions are com-
putationally more intensive as evident from Fig. 4. However,
there is evidence in the tiger problem that modeling at level1
results in better performance in comparison to naively treat-
ing the other agent as noise (Gmytrasiewicz & Doshi 2005).

Due to an absence of other offline approximation tech-
niques for I-POMDPs, we compare the performance of I-
PBVI with the interactive particle filter (I-PF) based approx-
imation (Doshi & Gmytrasiewicz 2005). We generate policy
trees for as many initial beliefs ofi as the number of belief
points used in I-PBVI. Although the I-PF is able to mitigate
the curse of dimensionality, it must generate the full reacha-
bility tree to compute the policy and therefore it continuesto
suffer from the curse of history that affects I-POMDPs. The
better performance of I-PBVI in comparison to I-PF demon-
strates that point based value iteration is able to mitigatethe

impact of the curse of history that affects the solutions of both
the agents’ decision processes. Furthermore, we were unable
to run the I-PF beyond a few time horizons due to excessive
memory consumption.

8 Discussion
We presented a generalization of point based value iteration
applicable to interactive settings where agents model oth-
ers. The approximation technique isanytimeand exhibits
improved performance and scalability in comparison to
previous approximations of I-POMDPs. While it mitigates
the impact of having to maintain the history of interaction,
nevertheless we maintain the set of reachable models of
the other agent that could quickly grow over time. Further
improvement is possible by carefully limiting the set of
candidate models of others that are considered.
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