
Efficient Value-Function Approximation via Online Linear Regression

Lihong Li and Michael L. Littman
Department of Computer Science

Rutgers University
Piscataway, NJ 08854

{lihong,mlittman}@cs.rutgers.edu

Abstract

One of the key problems in reinforcement learning (RL) is
balancing exploration and exploitation. Another is learn-
ing and acting in large or even continuous Markov decision
processes (MDPs), where compact function approximation
has to be used. In this paper, we provide a provably effi-
cient, model-free RL algorithm for finite-horizon problems
with linear value-function approximation that addresses the
exploration-exploitation tradeoff in a principled way. The key
element of this algorithm is the use of a hypothesized online
linear-regression algorithm in the recently proposed KWIK
framework. We show that, if the sample complexity of the
KWIK online linear-regression algorithm is polynomial, then
the sample complexity of exploration of the RL algorithm is
also polynomial. Such a connection provides a promising ap-
proach to efficient RL with function approximation via study-
ing a simpler setting.

1 Introduction
One of the key problems in reinforcement learning (Sut-
ton & Barto 1998) is the exploration-exploitation tradeoff,
which strives to balance two competing types of behavior of
an autonomous agent in an unknown environment: the agent
can either make use of its current knowledge about the envi-
ronment to maximize its cumulative reward (i.e., to exploit),
or sacrifice short-term rewards to gather information about
the environment (i.e., to explore) in the hope of increasing
future long-term return.

Exploration can be framed as a dual control problem, and
(in principle) can be solved optimally in a Bayesian man-
ner. However, this approach is computationally intractable
and it is often not obvious how to select a prior distribution
for learning (Duff 2002). We only consider non-Bayesian
approaches in this paper. Thrun (1992) surveyed a num-
ber of popular exploration rules, including the competence-
map approach for continuous MDPs (Thrun & Möller 1992),
but little can be said about their performance guarantees.
In fact, some of them have provably poor performance in
certain situations. Recently, there has been a growing in-
terest in formally analyzing the sample complexity of ex-
ploration (Kakade 2003) in finite-state Markovian environ-
ments. This line of work has significantly advanced under-
standing of the exploration-exploitation dilemma, but has

Copyright c© 2007, authors listed above. All rights reserved.

not been merged with approaches for function approxima-
tion needed for scaling up.

In contrast, this paper is concerned with intelligent explo-
ration in large or even continuous environments where com-
pact function approximation has to be used. In particular,
we focus on the special case where the value function is rep-
resented as a linear combination of predefined features.1 In
contrast to previous work on linear value-function approx-
imation, our algorithm explicitly addresses the question of
balancing exploration and exploitation, and we formally an-
alyze its sample complexity. This algorithm works by reduc-
ing a finite-horizon reinforcement-learning problem to a se-
quence of related online linear regression problems, each of
which is solved by a hypothesized admissible algorithm, de-
notedA0, in the recently proposed KWIK framework (Strehl
& Littman 2008). Roughly speaking, A0 is admissible if it
predicts the target value of an example near-accurately ex-
cept in a polynomial (in relevant quantities that we will make
clear) number of examples where it signals “I don’t know”.

The main contribution of this paper is an efficient reduc-
tion to KWIK online linear regression from reinforcement
learning with linear value-function approximation and an ef-
ficient, built-in exploration scheme. This reduction shows
how important questions in reinforcement learning, such as
the sample complexity of exploration and value-function ap-
proximation error, may depend on the related quantities in
the simpler setting of KWIK online linear regression. Thus,
this connection allows us to study a simpler problem as a
means to solve the significantly more difficult RL problem.

Although A0 is hypothetical right now, a close relative
has been successfully created by Strehl & Littman (2008). In
particular, the existing algorithm requires that the function to
be learned be precisely linear, whereas our algorithm must
be tolerant to nearly linear target functions. However, the
close relationship between the two problems gives us hope
that A0 can be created under some mild conditions.

1Examples of features used in the linear-value-function-
approximation context include polynomial features, radial ba-
sis functions, and tile coding, etc. (Lagoudakis & Parr 2003;
Sutton 1996; Sutton & Barto 1998; van Roy 1998). In this paper,
we do not address the problem of selecting or constructing features,
which is itself a challenging problem. In practice, good features are
often designed by domain experts, and may also be automatically
generated (Parr et al. 2007).

The rest of the paper is organized as follows. Section 2 de-
fines the KWIK online regression problem and specifies the
conditions for the admissible algorithm A0. Section 3 re-
views the RL notation briefly, and then describes the reduc-
tion in detail. We provide a few theoretical results including
the sample complexity of exploration as well as error bounds
for the learned linear value functions, both of which scale up
nicely. Finally, Section 4 discusses the relationship between
this work to previous results, and Section 5 concludes the
paper by pointing out a few research directions.

2 KWIK Online Linear Regression
KWIK stands for “Know What It Knows”, and represents a
new framework for learning that is particularly well suited
for use in RL settings. An essential element of a KWIK
learner is that it is able to compute certain quantities to mea-
sure how confident it is in its predictions. A simple exam-
ple is confidence bounds for parameter estimation, which is
widely used in statistics and machine learning. Such confi-
dence information is particularly useful for a few purposes.
In reinforcement learning, for instance, confidence bounds
are used to select actions to guide exploration (Auer 2002;
Strehl & Littman 2005).

We first define the KWIK Online Regression Framework,
adopting terminology from Strehl & Littman (2008). We use
‖x‖ to denote the Euclidean norm of a vector x ∈ R

d where
d ∈ N is the dimension.
Definition 1 At timestep t = 1, 2, 3, · · · , a KWIK online
regression agent acts according to the following protocol:
• First, it receives an input vector xt ∈ R

d.
• Second, it provides an output ŷt ∈ [−1, 1] ∪ {Ξ}, where

Ξ is a special value indicating that the agent is not confi-
dent in its prediction and thus refuses to predict a numeric
value between −1 and 1. We call ŷt valid if ŷt 6= Ξ.

• Finally, the agent observes the (possibly noisy) ground
truth yt ∈ [−1, 1].
The problem becomes a KWIK online linear regression

problem if we must impose certain assumptions on the func-
tional relation between xt and yt.
Assumption 1 We make the following assumptions for the
KWIK online regression problem:
A. (Bounded-input assumption) ‖xt‖ ≤ 1 for all t.
B. (Semi-linearity assumption) There exist some (unknown)

vector w
∗ ∈ R

d and a small number ξ ∈ [0, 1) such that
‖w∗‖ ≤ 1 and |E[yt|xt]−w

∗ · xt| ≤ ξ for all t. We call
the quantity ξ the slack value.
Assumption 1A is reasonable as practical problems often

have bounded inputs and we can re-scale the inputs so that
this assumption holds. Assumption 1B essentially states that
the target function being learned is “almost” linear, and the
distance to being linearity is measured by the slack value ξ.
This assumption is less restrictive than it might appear at the
first glance. In practice, with an expanded set of features we
can often approximate a learning target by a function linear
in the features. This is a common trick to capture nonlinear-
ity via linear functions in many situations including kernel-
based learning (Shawe-Taylor & Cristianini 2004).

Note that we make no assumption on the sequence of in-
puts xt, except that ‖xt‖ is at most 1. In particular, xt can
depend on previous inputs {x1, · · · ,xt−1}, which is funda-
mentally different from the usual i.i.d. assumption made in
supervised-learning problems (e.g., see Hastie, Tibshirani,
& Friedman (2003)). As we shall see later, this difference
is important when we move to the RL setting in the next
section. We next define admissibility of KWIK online re-
gression algorithms.

Definition 2 A KWIK online regression algorithm A is ad-
missible if, for any given ε, δ > 0, the following two condi-
tions are satisfied with probability at least 1− δ:

• Whenever A predicts a valid ŷt 6= Ξ, we have that
|ŷt −E[yt|xt]| ≤ ε + ξ.

• The number of timesteps t for which ŷt = Ξ is bounded
by some function ζ(d, 1/ε, 1/δ) that is polynomial in d,
1/ε, and 1/δ. We call ζ the sample complexity of A.

An admissible, polynomial-time algorithm is proposed re-
cently by Strehl & Littman (2008) for KWIK online lin-
ear regression when ξ = 0; namely, the target function,
E[yt|xt], is a linear function of xt. When we allow ξ > 0,
however, the problem becomes significantly more difficult,
as illustrated by the following example.

Example 1 Fix any ξ > ε > 0. The input dimension is
d = 1, and the target function f to learn is the zero func-
tion (which is trivially linear): f(x) ≡ 0. Let the input at
time t be xt = min{tβ, 1} for some small β > 0, then the
corresponding output is yt = f(xt) = 0. Assume that the
learner knows f is noise free. But since it does not know that
f is exactly linear, it has to predict conservatively to handle
the worst-case situations. At time t where ξ

β
< t < 1

β
, the

learner has to say “I don’t know” since, based on the train-
ing data up to time t − 1, the possible range of yt, which is
[− 2tξ

t−1 , 2tξ
t−1], is too wide to guarantee a prediction error of

at most ξ + ε. By letting β ↓ 0, the number of Ξ does not
depend on ε or ξ, and is unbounded.

It may be appealing to change Definition 2 to tolerate a
prediction error of cξ+ε for some constant c > 1. While this
modification may allow admissible KWIK online regression
algorithms which may be useful on its own, it will lead to an
exponential growth of value-function approximation error in
the reduction given in Section 3. Therefore, in order to al-
low for the existence of algorithms that are admissible in the
sense of Definition 2, we have to make certain assumptions
on the process that generates the data [〈xt, yt〉]t∈N. Such
assumptions may place restrictions on, for example, the ac-
cumulative loss of the best linear hypothesis, w∗ · x, on the
sequence of data. Whether these assumptions are reasonable
depends on the applications at hand. For the purpose of this
paper, they are denoted abstractly by C.

Assumption 2 Under certain conditions C on the process
generating the samples [〈xt, yt〉]t∈N, there exists a KWIK
online linear regression algorithmA0 that is admissible and
takes polynomial running time in every timestep. We de-
note its sample complexity by ζ0(d, 1/ε, 1/δ), and its per-
step computation complexity by τ0(d, 1/ε, 1/δ).

In the rest of the paper, we assume that condition C holds
whenever we apply the base algorithm A0.

3 Reinforcement Learning with Linear
Value-Function Approximation

Given the background terminology and assumptions in the
previous section, we consider reinforcement learning that in-
volves sequential prediction and control. After a brief intro-
duction to notation and terminology, we describe a reduction
to KWIK online linear regression from RL.

3.1 Preliminaries
We consider environments modeled as finite-horizon
Markov decision processes (Puterman 1994), or MDPs
for short. An MDP M can be described by a six-tuple
〈S,A, T,R,H, µ0〉, where S is a set of states, A is a finite
set of actions, T is the transition function with T (s, a, s′)
denoting the probability of reaching s′ from s by taking
action a, R is a bounded reward function with R(s, a) ∈
[0, 1] denoting the expected immediate reward gained by
taking action a in state s, H ∈ N is the horizon, and
µ0 is a start-state distribution.2 An MDP is said to be
finite (or infinite) if the state space S is finite (or infi-
nite). For convenience, define the set of stages as [H] =
{1, 2, · · · , H}. An episode is a sequence of H state transi-
tions: 〈s1, a1, r1, s2, · · · , sH , aH , rH , sH+1〉, where s1 ∼
µ0 and sH+1 is a terminal state. An agent repeatedly
chooses actions until the current episode terminates, and
then a new episode starts over again.

A nonstationary policy maps states and stages to actions:
π : S × [H] → A. Specifically, π(s, h) ∈ A is the ac-
tion the agent will take if s is the current state at stage h.
Given a policy π, we define the state-value function, V π

h (s),
as the expected cumulative reward received by executing
π starting from state s at stage h until the episode termi-
nates at stage H . Similarly, the state–action value function
(a.k.a. the Q-function), Qπ

h(s, a), is the expected cumula-
tive reward received by taking action a in state s at stage
h and following π until the episode terminates at stage H .
A reinforcement-learning agent attempts to learn an opti-
mal policy π∗ whose value functions at stage h are de-
noted by V ∗

h (s) and Q∗
h(s, a), respectively. It is known that

V ∗
h = maxπ V π

h and Q∗
h = maxπ Qπ

h . A greedy policy at
stage h, denoted πQh

, with respect to a value function Qh

is one that selects actions with maximum Q-values; namely,
πQh

(s, h) = arg maxa Qh(s, a). The greedy policy with
respect to Q∗

h is optimal for stage h. The Bellman equation
plays a central role to many RL algorithms including the one
we will describe: for any s ∈ S, a ∈ A, h ∈ [H],

Q∗
h(s, a) = R(s, a) +

∑

s′∈S

(

T (s, a, s′)max
a′∈A

Q∗
h+1(s

′, a′)

)

where Q∗
H+1 is understood to be the zero function.

2In general, an H-horizon MDP may have transition probabil-
ities and reward function dependent on the stage. We choose a
simpler definition for ease of exposition. The results and analysis
in the paper apply to the general case with minor modifications.

Given the complete model of a finite MDP (i.e., the six-
tuple), standard algorithms exist for finding the optimal
value function and the optimal policy, including linear pro-
gramming, value iteration, and policy iteration (Puterman
1994). However, if the transition and/or reward functions
are unknown, the agent has to learn the optimal value func-
tion or policy by interacting with the environment. Algo-
rithms such as Q-learning with ε-greedy exploration (Sut-
ton & Barto 1998) do not address the exploration prob-
lem efficiently and may be highly inefficient in some do-
mains (Thrun 1992; Koenig & Simmons 1996).

Recently, there has been a growing interest in formally
analyzing the efficiency of exploration strategies in finite
MDPs. For any fixed ε, Kakade (2003) defines the sample
complexity of exploration of an RL algorithm A to be the
number of timesteps t such that the non-stationary policy at
time t,At, is not ε-optimal from the current state st at time t
(i.e., V At(st) ≤ V ∗(st)−ε). An algorithmA is then said to
be PAC-MDP (Probably Approximately Correct in Markov
Decision Processes) if, for any ε > 0 and δ ∈ (0, 1), its sam-
ple complexity of exploration is less than some polynomial
in |S|, |A|, 1/ε, 1/δ, and 1/(1− γ), with probability at least
1 − δ (Strehl et al. 2006). Examples of PAC-MDP algo-
rithms include E3 (Kearns & Singh 2002), RMAX (Brafman
& Tennenholtz 2002), MBIE (Strehl & Littman 2005), and
delayed Q-learning (Strehl et al. 2006).

3.2 Efficient RL with Linear Value Functions
In this subsection, we propose an algorithm, AH , for H-
horizon reinforcement learning in which a linear value func-
tion is used. In particular, we assume a set of d features are
predefined: φ : S × A 7→ [−1, 1]d. A Q-function can then
be represented compactly by a weight vector wh ∈ R

d for
each h ∈ [H]: Q̂h(s, a) = wh · φ(s, a). Such a linear ap-
proximation scheme is widely used to solve large-scale RL
problems (Lagoudakis & Parr 2003; Sutton & Barto 1998).

Similarly to the previous section, we make a semi-
linearity assumption for the value function at every stage.
Remember that outputs in the KWIK online regression (c.f.,
Definition 1) are in [−1, 1], we need to re-scale the value
function to the same range by dividing Q∗

h by H:

Assumption 3 (Semi-linearity assumption) For every stage
h ∈ [H], there exist some (unknown) vector w

∗
h ∈ R

d and a
small number ξh > 0 such that ‖w∗

h‖ ≤ 1 and
∣

∣

∣

∣

Q∗
h(s, a)

H
−w

∗
h · φ(s, a)

∣

∣

∣

∣

≤ ξh (1)

for all s and a. Whether it is required to know ξh depends
on whether such information is needed by A0.

Algorithm 1 gives a formal description of AH . Basi-
cally, AH learns the optimal value functions Q∗

h by treat-
ing them as H related KWIK online linear regression prob-
lems. It runs H copies of the base algorithm A0 to update
the weight vector wh for each stage h. By the Bellman equa-
tion, the Q-function at stage h is defined recursively as the
sum of immediate reward at stage h and the expected opti-
mal Q-value of the next states. Therefore, the algorithm im-

S1

S2

S3

S4

Stage h = 2:

(w2 is used to compute q2,L and q2,R)

(3) choose greedy a2 = R since both
q2,L and q2,R are valid

(4) use r1 +q2,a2
to update w1 as this

backup value is “trusted”

Stage h = 1:

(w1 is used to compute q1,L and q1,R)

(1) choose exploratory a1 = L since
q1,L = Ξ

(2) no backup is needed as this is the
first horizon

Stage h = 3:

(w3 is used to compute q3,L and q3,R)

(5) choose exploratory a3 = R since
q3,R = Ξ

(6) do not use r2+q3,a3
to update w2

as this value is “unknown”

(7) use r3 to update w3 as this
backup value is always “trusted”

Episode terminates in state s4.

q1,L = Ξ q1,R = 2.5

q2,L = 1.3 q2,R = 1.7

q3,L = 0.8 q3,R = Ξ

r1 = 0.3

r2 = 0.9

r3 = 0.1

Figure 1: An illustration of the operations of AH in a
3-horizon MDP. Two actions are allowed in every state:
{L,R}. The same notation as in Algorithm 1 is used.

proves its value-function estimates by performing Bellman-
backup-style updates. A central idea behind the efficiency
of the reduction is that we only use a backup value when it
is “known”. A backup value is “known” when the predic-
tion made by A0 is valid, and thus by Assumption 2 must
be near-accurate to the true value. Figure 1 gives a simple
H-horizon example for H = 3. It illustrates how to choose
actions and how to select backup values to do learning.

A quick observation aboutAH is that, if the per-step com-
putation complexity of A0 is τ0, then the per-step compu-
tation complexity of AH is O(|A| τ0), when execution of
lines 17–21 are amortized to every timestep. So, the per-
step computation complexity scales nicely from regression
problems to sequential decision making in MDPs, in con-
trast to algorithms such as sparse sampling (Kearns, Man-
sour, & Ng 2002) that scales exponentially in the horizon
length. We next turn to the more difficult questions of sam-
ple complexity of exploration and value-function approxi-
mation error bounds.

Theorem 1 Suppose Assumption 3 holds. If A(h)
0 is run

with parameters εh and δh in Algorithm 1, then:

I. The number of Ξ outputted in stage h ∈ [H] is at most

H
∑

l=h

ζ0

(

d,
1

εl

,
1

δl

)

;

II. The total number of Ξ outputted during the whole run of

Algorithm 1 Algorithm AH for H-horizon reinforcement
learning by a reduction to A0. The base algorithm A0 is
run for each stage h to maintain a separate weight vector
wh ∈ R

d so that the value-function estimate at stage h is
Q̂h(s, a) = H ·wh · φ(s, a).

0: Inputs: A, H , φ, εh, and δh for h ∈ [H].
1: Initialize H copies of A0, one for each h ∈ [H]. The

copy at stage h is run with parameters εh and ξh, and is
denoted by A(h)

0 .
2: for episode i = 1, 2, 3, · · · do
3: for stage h = 1, 2, 3, · · · , H do
4: Observe state sh.
5: for all a ∈ A do
6: Use A(h)

0 to compute qh,a ∈ [0, H] ∪ {Ξ} as a
prediction for Q∗

h(sh, a). Here, if A(h)
0 gives a

valid prediction, then this prediction has to be
multiplied by H to obtain qh,a due to the nor-
malization (1) we have used.

7: end for
8: if qh,a = Ξ for some a ∈ A then
9: ah ← a // do exploration

10: Lh ← FALSE // Q∗

h(sh, ah) is “unknown”

11: else
12: ah ← arg maxa qh,a // do exploitation

13: Lh ← TRUE // Q∗

h(sh, ah) is “known” and qh,a is “trusted”

14: end if
15: Take action ah and observe reward rh.
16: end for
17: for h = 2, 3, · · · , H do
18: if Lh = TRUE then
19: Use

(

φ(sh−1, ah−1),
rh−1+qh,ah

H

)

as an exam-

ple for A(h−1)
0 to update wh−1.

20: end if
21: end for
22: Use

(

φ(sH , aH), rH

H

)

as an example for A(H)
0 to up-

date wH . // terminating rewards are always “trusted”

23: end for

AH in all stages is at most

H
∑

h=1

(

h · ζ0

(

d,
1

εh

,
1

δh

))

;

III. With probability at least 1−
∑H

l=1 δl, all valid Q-value
predictions at stage h differ from the true values by at
most

H ·

H
∑

l=h

(εl + ξl) .

Before proving this theorem, we first mention a few impli-
cations of it. The following corollary, which follows imme-
diately from Theorem 1, indicates that the sample complex-
ity and error bounds of the KWIK online linear regression
algorithm A0 scale nicely to the analogous quantities in the
more complicated, H-horizon RL problem.

Corollary 1 If we let εh = ε0, δh = δ0, and ξh = ξ0 for all
stage h in Theorem 1, then:

I. The number of Ξ outputted at stage h is
O
(

Hζ0

(

d, 1
ε0

, 1
δ0

))

;

II. The total number of Ξ outputted during the whole run of
AH in all stages is O

(

H2ζ0

(

d, 1
ε0

, 1
δ0

))

;

III. With probability at least 1 − Hδ0, all valid Q-value
predictions at stage h differ from the true values by at
most H(H − h + 1) (ε0 + ξ0) = O(H2(ε0 + ξ0)).

Using Corollary 1, we can prove the following theorem
about the sample complexity of exploration of AH . Our
focus is to provide the first polynomial sample complexity
bound, although it is possible to improve the bounds using a
more careful analysis.

Theorem 2 Given any ε, δ > 0, assume we can find a set of
d features so that Assumption 3 holds with ξh = O(ε

H3). If
we runA(h)

1 with εh = O(ε
H3) and δh = δ

2H
in Algorithm 1,

then the policy used by the agent is ε-optimal except

O

(

H3

ε
ζ0

(

d,
H3

ε
,
H

δ

)

log
1

δ

)

episodes, with probability at least 1− δ.

3.3 Analysis

Due to space limitation, we only provide proof sketches for
the theorems given in the previous subsection. Before prov-
ing the sample complexity of exploration bound, we first
provide two useful lemmas. The first is simple and the proof
is omitted.

Lemma 1 Let f1 and f2 be two real-valued functions on
the same finite domain X; namely, fi : X 7→ R, for i =
1, 2. If maxx∈X |f1(x)− f2(x)| ≤ ∆ for some ∆ > 0, then
|maxx∈X f1(x)−maxx∈X f2(x)| ≤ ∆.

Lemma 2 Let π be a policy for an H-horizon MDP. Let s1

be a fixed start state of an episode, and sh be the state visited
at stage h of this episode. Then,

V ∗
1 (s1)− V π

1 (s1)

= Eπ

[

H
∑

h=1

(

Q∗
h(sh, π∗(sh, h))−Q∗

h(sh, π(sh, h))
)

]

,

where Eπ stands for the expectation with respect
to the probability distributions of trajectories ρ =
[s1, s2, · · · , sH , sH+1] generated by policy π.

PROOF. We let rh denote the reward received at stage h by
following π. Note that both sh and rh are random variables
whose distributions are completely determined by policy π
as s1 is fixed. Then,

V ∗
1 (s1) = Q∗

1(s1, π
∗(s1, 1))

= Q∗
1(s1, π(s1, 1))

+
(

Q∗
1(s1, π

∗(s1, 1))−Q∗
1(s1, π(s1, 1))

)

= Eπ [r1 + V ∗
2 (s2)]

+
(

Q∗
1(s1, π

∗(s1, 1))−Q∗
1(s1, π(s1, 1))

)

.

We apply the derivation above for V ∗
h (sh) recursively up to

stage H , and obtain

V ∗
1 (s1) = Eπ[r1 + r2 + · · ·+ rH]

+Eπ

[

∑H
h=1

(

Q∗
h(sh, π∗(sh, h))−Q∗

h(sh, π(sh, h))
)]

.

By definition, V π
1 (s1) = Eπ[r1 + r2 + · · · + rH], which

immediately proves the lemma. 2

Proof of Theorem 1. The theorem can be proved by math-
ematical induction. For h = H , the theorem is ensured by
Assumption 2. For the induction step, assume the theorem
holds for all stages l > h where h < H and we consider
stage h. Due to operations of Algorithm 1, the transitions
from sh to sh+1 in all episodes can be categorized into two
groups: (i) Lh+1 = TRUE, and (ii) Lh+1 = FALSE.

Transitions belonging to case (i) consist of a stream of
data for A(h)

0 to run according to the KWIK online re-
gression protocol defined in Definition 1, and Assump-
tion 2 guarantees that there are at most ζ0(d, 1/εh, 1/δh)
timesteps for which Ξ is outputted. On the other
hand, by induction hypothesis, case (ii) happens at most
∑H

l=h+1 ζ0(d, 1/εl, 1/δl) times. Therefore, the total num-
ber of Ξ outputted in stage h is at most

ζ0(d, 1/εh, 1/δh) +
H
∑

l=h+1

ζ0(d, 1/εl, 1/δl),

which is what we desire to prove for part I.
Part II follows directly from part I.
For part III, the target function to learn at stage h is given

by

Q̃h(s, a) = R(s, a) +
∑

s′∈S

T (s, a, s′)max
a′∈A

Q̂h+1(s
′, a′),

where Q̂h+1 is the function learned by AH in stage
h + 1.3 By the induction hypothesis, we have
∣

∣

∣
Q̂h+1(s

′, a′)−Q∗
h+1(s

′, a′)
∣

∣

∣
≤ H

∑H
l=h+1(εl + ξl) for

all (s′, a′) whenever Ξ is not outputted. Let Q̂h be

3Strictly speaking, Q̂h+1 may change over time and thus Q̃h

is not a stationary learning target. But, this fact does not affect
our analysis as long as Q̂h+1 is always bounded between Q∗

h+1 −

H
PH

l=h+1(εl + ξl) and Q∗

h+1 + H
PH

l=h+1(εl + ξl).

the function A(h)
0 learns, then for any (s, a) we have

∣

∣

∣
Q̂h(s, a)− Q̃h(s, a)

∣

∣

∣
≤ H(εh + ξh) due to Assumptions 2

and 3. Combining all these facts, we have for any (s, a):
∣

∣

∣
Q̂h(s, a)−Q∗

h(s, a)
∣

∣

∣

≤
∣

∣

∣
Q̂h(s, a)− Q̃h(s, a)

∣

∣

∣
+
∣

∣

∣
Q̃h(s, a)−Q∗

h(s, a)
∣

∣

∣

≤ H (εh + ξh) +

∣

∣

∣

∣

∣

∑

s′∈S

T (s, a, s′)
(

max
a′∈A

Q̂h+1(s
′, a′)

−max
a′∈A

Q∗
h+1(s

′, a′)
)

∣

∣

∣

∣

∣

≤ H(εh + ξh)

+max
s′∈S

∣

∣

∣

∣

max
a′∈A

Q̂h+1(s
′, a′)−max

a′∈A
Q∗

h+1(s
′, a′)

∣

∣

∣

∣

≤ H(εh + ξh) + H

H
∑

l=h+1

(εl + ξl)

= H

H
∑

l=h

(εl + ξl),

where the last inequality is due to Lemma 1.

Proof for Theorem 2. For episode i, let pi be the probabil-
ity of entering some state s for which Ξ is outputted, when
start states are drawn from µ0. Denote by πi the policy used
by AH in episode i. Let Q̂h be the value-function estimate
of the algorithm for stage h.

Consider any state trajectory ρ = [s1, s2, · · · , sH , sH+1]
generated by policy πi. Two situations can occur: (i) Ξ is
outputted (maybe multiple times) in ρ, and (ii) Ξ is not out-
putted in ρ. The probabilities of cases (i) and (ii) are p and
1−p, respectively. When case (ii) happens, with probability
at least 1−

∑H
h=1 δh = 1− δ

2 , we have for each h,

Q∗
h(sh, π∗(sh, h))−Q∗

h(sh, πi(sh, h))

≤ Q∗
h(s, π∗(sh, h))− Q̂h(sh, πi(sh, h))

+O
(

H2(εh + ξh)
)

= Q∗
h(s, π∗(sh, h))− Q̂h(sh, πi(sh, h)) + O

(ε

H

)

≤ Q∗
h(s, π∗(sh, h))− Q̂h(sh, π∗(sh, h)) + O

(ε

H

)

≤ O
(

H2(εh + ξh)
)

+ O
(ε

H

)

= O
(ε

H

)

, (2)

where the first and last inequalities are due to Corol-
lary 1(III), and the second due to the fact that πi is greedy
with respect to Q̂h when no Ξ is outputted.

For any fixed start state s1, Lemma 2 asserts that

V ∗
1 (s1)− V πi

1 (s1)

= Eπi

[

H
∑

h=1

(

Q∗
h(sh, π∗(sh, h))−Q∗

h(sh, πi(sh, h))
)

]

.

Combined with Equation (2) and the fact that case (i)
happens with probability pi, the equality above implies
V ∗

1 (s1)− V πi

1 (s1) = O(ε + Hpi). When pi ≤ p0 for some
threshold p0 = O(ε

H
), we have V ∗

1 (s1) − V πi

1 (s1) = O(ε)
and also Es1∼µ0

[V ∗(s1)− V πi(s1)] = O(ε), indicating
that the policy πi is indeed O(ε)-optimal.

We claim that with high probability pi > p0 will hold only
a polynomial number of episodes. Specifically, Corollary 1
asserts that Ξ is outputted O(H2ζ0(d, H3

ε
, H

δ
)) times. Using

the inequality of Hoeffding (1963), with probability at least
1− δ

2 , the number of episodes i with pi > p0 is

O

(

H2ζ0(d, H3

ε
, H

δ
)

p0
log

1

δ

)

.

Substituting p0 = O(ε
H

) and applying the union bound to
the two cases (pi > p0 and pi ≤ p0) gives the lemma.

3.4 An Extension to Discounted RL
While we have focused on finite-horizon RL problems in
this paper, it is often easier to model environments by dis-
counted MDPs (Puterman 1994; Sutton & Barto 1998),
which are specified by a five-tuple, 〈S,A, T,R, γ〉, where
γ ∈ [0, 1) is a discount factor. Changes in notation and ter-
minology are necessary since there is no notion of horizon
in this setting. Specifically, we only need to consider sta-
tionary policies and value functions: a policy is a mapping
from states to actions: π : S 7→ A; the value functions,
such as Qπ

γ (s, a) and Q∗
γ(s, a), are defined as the expected

cumulative γ-discounted reward.
An observation for discounted MDPs is that rewards in the

future are exponentially down-weighted. Since rewards are
bounded, rewards received after a large number of timesteps
contribute little to the value of the current state. There-
fore, we may transform a γ-discounted MDP Mγ into an
H-horizon MDP MH so that the optimal value functions of
MH and Mγ differ by at most ε, provided

H = Ω

(

log 1
ε(1−γ)

1− γ

)

.

It is worth mentioning that even if the optimal value func-
tion in Mγ , Q∗

γ , is near linear, the intermediate value func-
tions in MH , Q∗

h, need not be near linear. We note that
this problem may be resolved by using different sets of
features at different stages. That is, we require features
φh : S × A 7→ [−1, 1]d at stage h, and assume that Q∗

h

satisfies Assumption 3 with small slack ξh. Algorithm AH

can then be applied.

4 Related Work
Our work in this paper is most related to the original KWIK
online linear regression framework proposed by Strehl &
Littman (2008). The only difference in problem formula-
tion is that we make a semi-linearity assumption while they
assume exact linearity. This change is necessary if we allow
Bellman-backup-style updates on the value functions since
the backup value (i.e., rh−1+qh,ah

H
in line 19 of Algorithm 1)

is unavoidably biased and it is unreasonable to assume the
target function at stage h− 1 remains linear for all possible
biases introduced in stage h.

The second significant difference is how KWIK online
linear regression is applied to RL problems. Strehl &
Littman (2008) adopt a model-based approach: they as-
sume the MDP state transitions are governed by a set of
linear equations with white, Gaussian noise, and then apply
KWIK online linear regression to learn the transition ma-
trices, and finally solve the learned MDP model to obtain
a policy that either explores or exploits. Even if an MDP
can be accurately modelled as a linear system and approxi-
mate planning is concerned, however, solving a continuous
MDP remains a challenging task (Chow & Tsitsiklis 1989;
Kearns, Mansour, & Ng 2002; Kocsis & Szepesvári 2006).
In contrast, the model-free approach taken in this paper
avoids this problem completely by learning the value func-
tion directly. With a learned linear value function, finding
the greedy action takes only O(|A| d) time per step.

Another related work is metric-E3 (Kakade, Kearns, &
Langford 2003), which also addresses the problem of ef-
ficient exploration in continuous MDPs. They also use a
model-based approach, and develop sample complexity of
exploration in terms of the so-called cover number of an
MDP—a number that describes how complex the MDP is.
Similarly, they also make an assumption on the availability
of an efficient, continuous MDP solver, which might limit
the use of their algorithm in practice for the same reason.

The KWIK online linear regression framework we de-
scribed is related to the online learning model of linear
functions, where a rich set of beautiful results have been
established in the last two decades (e.g., the works by
Bernstein (1992), Cesa-Bianchi, Long, & Warmuth (1996),
Kivinen & Warmuth (1997), Klasner & Simon (1995),
Littlestone, Long, & Warmuth (1995), Long (1997), and
Vovk (1998)). In this model, input data are not assumed
to be i.i.d. (as what the paper does), and the outputs are
roughly a linear function of the inputs. Cumulative absolute
and squared error bounds are developed under various as-
sumptions. The main difference between that model and
ours is that we require the learner to be aware of the ac-
curacy of its prediction. However, ideas and results in the
online learning area may turn out useful for our framework
as well.

Recently, Peters & Schaal (2007) proposes an interesting
reduction from RL to reward-weighted regression. While
they consider the specific task of following a given trajec-
tory in rigid-body systems whose dynamics are governed by
a set of equations with unknown parameters, this paper fo-
cuses on learning in general MDPs where the learner is not
provided with such near-optimal trajectories.
AH is similar to delayed Q-learning (Strehl et al. 2006) in

that both of them allow a value backup to happen only if the
backup value is “trusted”. In finite MDPs, it is sufficient for
delayed Q-learning to become confident by averaging over
a large set of samples. In the case of using linear function
approximation, AH relies on A0 to do so. In turn, A0 is
expected to resort to more complicated reasoning.

5 Conclusions
The connection between KWIK online regression and re-
inforcement learning opens a number of interesting direc-
tions. First, we are currently developing a concrete algo-
rithm A0 under mild conditions C, and plan to compare it
against the standard RL algorithms with other exploration
strategies. With such an algorithm at hand, it is possible to
improve the bounds provided in Section 3.2 to make them
more practical.

Second, it is important to find more efficient reductions
for discounted RL that do not involve an intermediate con-
version to an H-horizon problem, as described in Sec-
tion 3.4. Also, a more careful analysis is needed for the
discounted case.

Third, it is observed that a similar reduction in Algo-
rithm 1 applies to KWIK online nonlinear regression. This
fact allows us to use more expressive classes of nonlinear
value functions, which may lead to better policies in some
problems.

Finally, we expect fruitful applications of KWIK on-
line regression to (associative) bandit problems (Abe, Bier-
mann, & Long 2003; Auer 2000; 2002; Long 1997). These
problems are classic settings for studying the exploration-
exploitation dilemma, and have found important applica-
tions in the fast growing market of Internet sponsored search
(e.g., (Gonen & Pavlov 2007)).

Acknowledgements
We appreciate the helpful discussion with Alex Strehl. The
anonymous reviewers also provided constructive comments
and links to relevant works that have improved the paper.
The work is primarily supported by NSF-ITR-0325281.

References
Abe, N.; Biermann, A. W.; and Long, P. M. 2003. Rein-
forcement learning with immediate rewards and linear hy-
potheses. Algorithmica 37(4):263–293.
Auer, P. 2000. An improved on-line algorithm for learn-
ing linear evaluation functions. In Proceedings of the
Thirteenth Annual Conference on Computational Learning
Theory (COLT-00), 118–125.
Auer, P. 2002. Using confidence bounds for exploitation-
exploration trade-offs. Journal of Machine Learning Re-
search 3:397–422.
Bernstein, E. J. 1992. Absolute error bounds for learning
linear functions online. In Proceedings of the Fifth Annual
Conference on Computational Learning Theory (COLT-
92), 160–163.
Brafman, R. I., and Tennenholtz, M. 2002. R-max—
a general polynomial time algorithm for near-optimal re-
inforcement learning. Journal of Machine Learning Re-
search 3:213–231.
Cesa-Bianchi, N.; Long, P. M.; and Warmuth, M. 1996.
Worst-case quadratic loss bounds for prediction using lin-
ear functions and gradient descent. IEEE Transactions on
Neural Networks 7(3):604–619.

Chow, C.-S., and Tsitsiklis, J. N. 1989. The complexity of
dynamic programming. Journal of Complexity 5(4):466–
488.
Duff, M. O. 2002. Optimal Learning: Computational Pro-
cedures for Bayes-Adaptive Markov Decision Processes.
Ph.D. Dissertation, University of Massachusetts, Amherst,
MA.
Gonen, R., and Pavlov, E. 2007. An incentive-compatible
multi-armed bandit mechanism. In Proceedings of the
Twenty-Sixth Annual ACM Symposium on Principles of
Distributed Computing (PODC-07).
Hastie, T.; Tibshirani, R.; and Friedman, J. H. 2003. The
Elements of Statistical Learning: Data Mining, Inference,
and Prediction. Springer Series in Statistics. Springer, 1st
edition.
Hoeffding, W. 1963. Probability inequalities for sums of
bounded random variables. Journal of the American Sta-
tistical Association 58(301):13–30.
Kakade, S.; Kearns, M. J.; and Langford, J. 2003. Explo-
ration in metric state spaces. In Proceedings of the Twenti-
eth International Conference on Machine Learning (ICML-
03), 306–312.
Kakade, S. 2003. On the Sample Complexity of Rein-
forcement Learning. Ph.D. Dissertation, University Col-
lege London, UK.
Kearns, M. J., and Singh, S. P. 2002. Near-optimal rein-
forcement learning in polynomial time. Machine Learning
49(2–3):209–232.
Kearns, M. J.; Mansour, Y.; and Ng, A. Y. 2002. A
sparse sampling algorithm for near-optimal planning in
large Markov decision processes. Machine Learning 49(2–
3):193–208.
Kivinen, J., and Warmuth, M. K. 1997. Exponentiated
gradient versus gradient descent for linear predictors. In-
formation and Computation 132(1):1–63.
Klasner, N., and Simon, H. U. 1995. From noise-free
to noise-tolerant and from on-line to batch learning. In
Proceedings of the Eighth Annual Conference on Compu-
tational Learning Theory (COLT-95), 250–257.
Kocsis, L., and Szepesvári, C. 2006. Bandit based Monte-
Carlo planning. In Proceedings of the Seventeenth Euro-
pean Conference on Machine Learning (ECML-06), 282–
293.
Koenig, S., and Simmons, R. G. 1996. The effect of
representation and knowledge on goal-directed exploration
with reinforcement-learning algorithms. Machine Learn-
ing 22(1–3):227–250.
Lagoudakis, M. G., and Parr, R. 2003. Least-squares policy
iteration. Journal of Machine Learning Research 4:1107–
1149.
Littlestone, N.; Long, P. M.; and Warmuth, M. K. 1995.
On-line learning of linear functions. Computational Com-
plexity 5(2):1–23.
Long, P. M. 1997. On-line evaluation and prediction us-
ing linear functions. In Proceedings of the Tenth Annual

Conference on Computational Learning Theory (COLT-
97), 21–31.
Parr, R.; Painter-Wakefield, C.; Li, L.; and Littman, M. L.
2007. Analyzing feature generation for value-function ap-
proximation. In Proceedings of the Twenty-Fourth Interna-
tional Conference on Machine Learning (ICML-07), 737–
744.
Peters, J., and Schaal, S. 2007. Reinforcement learning by
reward-weighted regression for operational space control.
In Proceedings of the Twenty-Fourth International Confer-
ence on Machine Learning (ICML-07), 745–750.
Puterman, M. L. 1994. Markov Decision Processes:
Discrete Stochastic Dynamic Programming. New York:
Wiley-Interscience.
Shawe-Taylor, J., and Cristianini, N. 2004. Kernel Methods
for Pattern Analysis. Cambridge University Press.
Strehl, A. L., and Littman, M. L. 2005. A theoretical
analysis of model-based interval estimation. In Proceed-
ings of the Twenty-Second Conference on Machine Learn-
ing (ICML-05), 857–864.
Strehl, A. L., and Littman, M. L. 2008. Online linear re-
gression and its application to model-based reinforcement
learning. In Advances in Neural Information Processing
Systems 20 (NIPS-07).
Strehl, A. L.; Li, L.; Wiewiora, E.; Langford, J.; and
Littman, M. L. 2006. PAC model-free reinforcement learn-
ing. In Proceedings of the Twenty-Third International Con-
ference on Machine Learning (ICML-06), 881–888.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement Learn-
ing: An Introduction. Cambridge, MA: MIT Press.
Sutton, R. S. 1996. Generalization in reinforcement
learning: Successful examples using sparse coarse coding.
In Advances in Neural Information Processing Systems 8
(NIPS-95), 1038–1044.
Thrun, S., and Möller, K. 1992. Active exploration in
dynamic environments. In Advances in Neural Information
Processing Systems 4 (NIPS-91), 531–538.
Thrun, S. 1992. The role of exploration in learning control.
In White, D. A., and Sofge, D. A., eds., Handbook of In-
telligent Control: Neural, Fuzzy and Adaptive Approaches.
Van Nostrand Reinhold. 527–559.
van Roy, B. 1998. Learning and Value Function Approxi-
mation in Complex Decision Processes. Ph.D. Dissertation,
Massachusetts Institute of Technology, Cambridge, MA.
Vovk, V. 1998. Competitive on-line linear regression.
In Advances in Neural Information Processing Systems 10
(NIPS-97), 364–370.

