
Sampling for Approximate Inference
in Continuous Time Bayesian Networks

Yu Fan
University of California, Riverside

yfan@cs.ucr.edu

Christian R. Shelton
University of California, Riverside

cshelton@cs.ucr.edu

Abstract

We first present a sampling algorithm for continuous time
Bayesian networks based on importance sampling. We then
extend it to continuous-time particle filtering and smoothing
algorithms. The three algorithms can estimate the expectation
of any function of a trajectory, conditioned on any evidence
set constraining the values of subsets of the variables over
subsets of the timeline. We present experimental results on
their accuracies and time efficiencies, and compare them to
expectation propagation.

1 Introduction
Many systems evolve asynchronously in continuous time,
for example computer networks, sensor networks, mo-
bile robots, and cellular metabolisms. Continuous time
Bayesian networks (CTBNs) (Nodelman, Shelton, & Koller
2002) model such stochastic systems in continuous time us-
ing graphs to represent conditional independencies among
discrete-valued processes. They have been applied to
human-computer interactions (Nodelman & Horvitz 2003),
server farm failures (Herbrich, Graepel, & Murphy 2004),
and robot monitoring (Ng, Pfeffer, & Dearden 2005). A tra-
jectory (sample) from a CTBN consists of the starting values
for the system along with the (real-valued) times at which
the variables change and their corresponding new values.

Inference for CTBNs is the task of estimating the distri-
bution over trajectories given a partial trajectory (in which
some values or transitions are missing for some variables
during some time intervals). Performing exact inference
in CTBNs is intractable. Recently Nodelman, Koller, &
Shelton (2005) presented an approximate inference method
based on expectation propagation (Minka 2001). Saria,
Nodelman, & Koller (2007) extended it to full believe prop-
agation and provided a method to adapt the approximation
quality. In this paper we explore a different approach. In-
stead of approximating the distributions involved, we use
sampling to approximate the expectation of a function of the
trajectory. Sampling has the advantage of being an anytime
algorithm. (We can stop at any time during the computation
and obtain an answer.) Furthermore, in the limit of infinite
samples (computation time), it converges to the true answer.
Our algorithm is simple to implement. However, the for-
mulation of this sampling procedure is not trivial due to the
Copyright c© 2008, authors listed above. All rights reserved.

infinite extent of the trajectory space, both in the transition
time continuum and the number of transitions.

1.1 Previous Work
Sampling from dynamic systems is not new. However,
most prior work has been in the area of discrete-time sys-
tems. Continuous-time systems pose different problems.
As we note below, any evidence containing a record of the
change in a variable has a zero probability under the model.
Therefore rejection sampling and straightforward likelihood
weighting are not generally viable methods.

Ng, Pfeffer, & Dearden (2005) developed a continuous-
time particle filtering algorithm. It only handled point evi-
dence on binary and ternary discrete variables using rejec-
tion sampling and focused primarily on the incorporation
of evidence from the continuous state part of the system.
By contrast our algorithm does not incorporate real-valued
state information, but it allows any evidence set and per-
forms general inference (not just filtering). Our algorithm
can be adapted to a population-based filter (a particle filter).

2 Continuous Time Bayesian Networks
Continuous time Bayesian networks (Nodelman, Shelton, &
Koller 2002) are based on the framework of continuous time,
finite state, homogeneous Markov processes. Let X be a
continuous time, finite state, homogeneous Markov process
with n states {x1, . . . , xn}. The behavior of X is described
by the initial distribution P 0

X and the intensity matrix

QX =




−qx1 qx1x2 · · · qx1xn

qx2x1 −qx2 · · · qx2xn

...
...

. . .
...

qxnx1 qxnx2 · · · −qxn


 ,

where qxixj
is the intensity with which X transitions from

xi to xj and qxi
=

∑
j 6=i qxixj

. The intensity matrix QX is
time invariant. Given QX , the amount of time X stays at xi

follows an exponential distribution with parameter qxi
. That

is, the probability density function of X remaining at xi is
f(qxi

, t) = qi exp(−qxi
t). The probability X transitions

from state xi to xj is θxixj
= qxixj

/qxi
. A conditional

intensity matrix(CIM) QX|U is defined as a set of intensity
matrices QX|u, one for each instantiation u of the variable

set U. The evolution of X depends instantaneously on the
values of the variables in U.

A continuous time Bayesian network N over X consists
of two components: an initial distribution P 0

X
, specified as

a Bayesian network B over X, and a continuous transition
model, specified using a directed (possibly cyclic) graph G
whose nodes are X ∈ X. Let UX denote the parents of X
in G. Each variable X ∈ X is associated with a conditional
intensity matrix, QX|UX

.

2.1 Likelihood and Sufficient Statistics
A CTBN defines a probability density over trajectories σ of
a set of variables X. Therefore, one way to describe the
distribution of a CTBN is to use the sufficient statistics of
σ (Nodelman, Shelton, & Koller 2003). Let T [x|u] be the
amount of time X = x while UX = u, and M [x, x′|u] be
the number of transitions from x to x′ while UX = u. If
we let M [x|u] =

∑
x′ M [x, x′|u], the probability density

of trajectory σ (omitting the starting distribution) is

PN (σ) =
∏

X∈X

LX(T [X |U], M [X |U])

where LX(T [X |U], M [X |U]) =

∏

u

∏

x



q
M [x|u]
x|u exp(−qx|uT [x|u])

∏

x′ 6=x

θ
M [x,x′|u]
xx′|u



 (1)

is the local likelihood for variable X . The likelihood also
decomposes by time. That is, the likelihood of a trajectory
on [0, T) is equal to the likelihood based only on sufficient
statistics from time 0 to time t multiplied by the likelihood
based only on sufficient statistics from time t to time T .

2.2 Evidence and Queries
Given a CTBN model, we would like to use it to answer
queries conditioned on some observations. Usually there are
two types of observations: point evidence and continuous
evidence. Point evidence represents the observation of the
value of some variables at a particular time. Continuous ev-
idence provides the behavior of some variables throughout
an interval [t1, t2). For instance, x = 1 during the interval
[2, 3.5), or x = 1 from t = 2 to t = 3 and then x transitions
to x = 0 at t = 3 and stays in that state until t = 5.

Queries can ask about the marginal distribution of some
variables at a particular time, such as the distribution of x
and y at t = 2, or questions about the timing of a transi-
tion, such as the distribution over the time that y transitions
from y = 1 to y = 2 for the first time in the interval [1, 4).
In learning (especially expectation-maximization), we might
query the expected sufficient statistics of a CTBN, which in-
cludes the total amount of time that a variable spends on a
state, and the total number of times that a variable transitions
from one state to another state under certain conditions. For
example, we might want to know the total amount of time
that x = 0 throughout the entire interval, or the number of
times that x transitions from 1 to 2 during the time inter-
val [2, 3) when y = 0. In this paper, we will concentrate
on answering queries given the continuous evidence, but our
method can be trivially extended to point evidence.

2.3 Exact Inference in CTBN
A CTBN can be viewed as a homogeneous Markov pro-
cess with a large joint intensity matrix amalgamated from
the CIMs of the CTBN. Exact inference in a CTBN can be
performed by generating a single joint intensity matrix over
the entire state space of the CTBN and running the forward-
backward algorithm on the joint intensity matrix of the ho-
mogeneous Markov process. We review this method here,
but a more complete treatment can be found in Nodelman,
Shelton, & Koller (2002).

Assume that we have a partially observed a trajectory σ
of a CTBN N from 0 to T . We can divide the evidence σ
into N intervals [ti, ti+1) (i = 0, . . . , N − 1) according to
the observed transition times. That is, each interval contains
a constant observation of the CTBN and ti is the time that
a variable begins to be observed, stops being observed, or is
observed to transition. We set t0 = 0 and tN = T .

To perform exact inference, we first generate the intensity
matrix Q for the joint homogeneous Markov process and
incorporate the evidence into Q. If each variable Xi in the
CTBN N has ni states, the number of states of the joint
Markov process is n =

∏
ni and Q is an n × n matrix.

The value of the off-diagonal element qij in Q for which
only one variable value is different between states i and j is
the corresponding intensity in the CIM of that variable. All
the other off-diagonal elements are zeros since two variables
can not transition at the same time in a CTBN. The diagonal
elements are computed to make each row sum to zero.

To incorporate the evidence, we reduce the joint intensity
matrix Q to Qi for each interval [ti, ti+1) by zeroing out
the rows and columns of Q which represent states that are
inconsistent with the evidence. Let Qi,j be matrix Q with
all element zeroed out except the off-diagonal elements that
represent the intensities transitioning from non-zero rows in
Qi to non-zero columns in Qj .

exp(Qi(ti+1− ti)) represents the transition matrix for in-
terval [ti, ti+1) and Qi,i+1 denotes the transition probability
between two consecutive intervals at time ti+1. We can use
the forward-backward algorithm for Markov process to an-
swer queries.

We define the forward and backward probability vectors
αt and βt as

αt = p(Xt, σ[0,t])

βt = p(σ[t,T)|Xt) .

Let α0 be the initial distribution P 0
X over the state and βT

be a vector of ones. The forward and backward distribution
vector for each interval can be calculated recursively:

αti+1 = αti
exp(Qi(ti+1 − ti))Qi,i+1

βti
= Qi−1,i exp(Qi(ti+1 − ti))βti+1 .

The distribution over the state of the CTBN at time t ∈
[ti, ti+1) given the evidence σ[0,T) can be computed as

P (Xt = i|σ[0,T)) =
1

Z
αti

exp(Qi(t − ti))∆i,i

exp(Qi(ti+1 − t))βti+1

where ∆i,j is a n × n matrix of zeros with one in position
i, j and Z is the normalization constant. Other queries can
be similarly computed.

Procedure CTBN-Sample(tend)
1. t← 0, σ← ∅
2. For each variable X ∈X

Choose state x(0) according to θB
X|paB(X).

Loop:
3. For each variable X such that Time(X) is undefined:

Choose ∆t for next X transition from an exponential
with parameter qx(t)|uX (t).

Define Time(X)← t + ∆t
4. Let X = arg minX∈X [Time(X)]
5. If Time(X) ≥ tend return σ
6. Update t← Time(X)
7. Choose x(t), the next value of X , from the multinomial
with parameters θx(t)|uX (t).

Add 〈X ← x(t), t〉 to σ.
Undefine Time(X) and Time(Y) for all variables Y
for which X ∈ UY .

Figure 1: Forward sampling semantics for a CTBN

3 Sampling-based Inference
As we described in the previous section, exact inference in
a CTBN can be performed by generating a single joint in-
tensity matrix over the entire state space. As the number of
states is exponential in the number of the nodes in the net-
work, this approach is infeasible when the network size is
large. In this section we describe an algorithm for approxi-
mate CTBN inference based on sampling.

3.1 Forward Sampling
Queries that contain no evidence can be answered by ran-
domly sampling many trajectories and looking at the frac-
tion that match the query. More formally, if we have a CTBN
N we generate a set of particles D = {σ[1], . . . , σ[M]}
where each particle is a sampled trajectory. With D we can
estimate the expectation of any function by computing

ÊN [f] =
1

M

M∑

m=1

f(σ[m]) . (2)

For example, if we let f = 1{x(5) = x1} then we could
use the above formula to estimate PN (x(5) = x1). Or the
function f(σ) might count the total number of times that
X transitions from x1 to x2 while its parent U has value
u1, allowing us to estimate the expected sufficient statistic
M [x1, x2|u1]. The algorithm for sampling a trajectory in
CTBN is shown in Figure 1. For each variable X ∈ X, it
maintains x(t) — the state of X at time t — and Time(X)
— the next potential transition time for X . The algorithm
adds transitions one at a time, advancing t to the next earliest
variable transition. When a variable X (or one of its parents)
undergoes a transition, Time(X) is resampled from the new
exponential waiting time distribution. We will use uX(t) to
represent the instantiation to parents of X at time t.

If we want to obtain a conditional probability of a query
given evidence, the situation is more complicated. We might
try to use rejection sampling: forward sample to generate
possible trajectories, and then simply reject the ones that are
inconsistent with our evidence. The remaining trajectories

are sampled from the posterior distribution given the evi-
dence, and can be used to estimate probabilities as in Equa-
tion 2. However, this approach is entirely impractical in our
setting, as in any setting involving an observation of a con-
tinuous quantity — in our case, time. In particular, suppose
we observe that X transitions from x1 to x2 at time t. The
probability of sampling a trajectory in which that transition
occurs at precisely that time is zero. Thus, if we have evi-
dence about transitions, with probability 1, none of our sam-
pled trajectories will be relevant.

3.2 Importance Sampling
A more practical approach to sampling in the presence of
evidence is importance sampling. In importance sampling,
we generate samples from a proposal distribution P ′ which
guarantees that our sampled trajectories will conform to our
evidence e. We must weight our samples to correct for the
fact that we are drawing them from P ′ instead of the target
distribution PN defined by the CTBN. In particular, if σ is a
sample from P ′ we set its weight to be

w(σ) =
PN (σ, e)

P ′(σ)
. (3)

In normalized importance sampling, we draw a set of sam-
ples D = {σ[1], . . . , σ[M]} i.i.d. from the proposal distribu-
tion, and estimate the conditional expectation of a function
f given evidence e as

ÊN [f | e] =
1

W

M∑

m=1

f(σ[m])w(σ[m]) (4)

where W is the sum of the weights.
This estimator is consistent if the support of P ′ is a su-

perset of the support of PN . In general, ÊN is biased and
the bias deceases as O(M−1). The variance of the estimator
also decreases as O(M−1). For more information on this
and related sampling estimates, see Hesterberg (1995).

For our algorithm, we base the proposal distribution on
the forward sampling algorithm. As we are sampling a tra-
jectory, we occasionally depart from the regular forward
sampling algorithm and “force” the behavior of one or more
variables to ensure consistency with the evidence.

3.3 Simple Evidence
The simplest query involves evidence over some subset of
variables V ⊂ X for the total length the trajectory. We
force only the behavior of the variables V and there are no
choices about how to do that. In particular, we use the fol-
lowing proposal distribution: forward sample the behavior
of variables X ∈ (X \ V) inserting the known transitions
at known times for variables in V as determined by the ev-
idence. As there were no choices in our forcing, the likeli-
hood of drawing σ from the proposal distribution is just the
likelihood contribution of forward sampling the behavior of
the variables X ∈ (X \V), in the context of the total behav-
ior of the system. But what is the likelihood contribution?

To be more precise, let x[t1 : t2] be the behavior of vari-
able X on the interval [t1, t2); this behavior can be sum-
marized by the sufficient statistics over X on the inter-
val. Let L̃X(x[t1 : t2]) be a partial likelihood contribution

function, computed by plugging the sufficient statistics of
x[t1 : t2] into Equation 1. The partial contribution function
can be defined over a collection of intervals I by setting
L̃N (I) =

∏
x[t1 : t2]∈I L̃X(x[t1 : t2]). We can partition

σ into two pieces. Let σe be the collection for all variables
X ∈ X of intervals x[t1 : t2] where the behavior of X is set
by the evidence. Let σs be the complement of σe contain-
ing the collection of intervals of unobserved behavior for all
variables. Returning to our simple evidence above, the like-
lihood contribution is just L̃N (σs). To compute the proper
weight w(σ) we substitute in Equation 3, cancel terms and
are left with L̃N (σe). Since σe contains all and only the
evidence, this algorithm exactly corresponds to likelihood
weighting in Bayesian networks (Shachter & Peot 1989;
Fung & Chang 1989). Intuitively, this makes sense because
we can account for all the evidence by simply assigning the
observed trajectories to the observed variables.

3.4 General Evidence
Now, consider a general evidence pattern e. How can we
force our trajectory to be consistent with e? Suppose there is
a set of variables which has evidence beginning at te. We can
not simply force a transition at time te to make the variables
consistent with the evidence e: if the set contains more than
one variable, the sample would have multiple simultaneous
transitions, an event whose likelihood is zero.

Instead, we look ahead for each variable we sample. If
the current state of the variable does not agree with the up-
coming evidence, we force the next sampled transition time
to fall before the time of the conflicting evidence by sam-
pling from a truncated exponential distribution, instead of
the full exponential distribution. In particular, if we are cur-
rently at time t and there is conflicting evidence for X at
time te, we sample from an exponential distribution with the
same q value as the normal sampling procedure, but where
the sample for ∆t (the time to the next transition) is required
to be less that te − t. The probability of sampling ∆t from
this truncated exponential is q exp(−q∆t)

1−exp(−q(te−t)) where q is the
relevant intensity for the current state of X (the diagonal el-
ement of QX|UX

corresponding to the current state of X).
The probability of sampling σ from the proposal distribu-

tion is the partial contribution of the regularly forward sam-
pled behavior on the unforced part of the trajectory L̃N (σs)
— which will cancel the corresponding term in the numera-
tor of Equation 3 — times an extra factor for the probability
of choosing the forcing transitions that we selected. For any
variable x whose value is given in the evidence during the
interval [t, t + ∆t), as we discussed above, the contribution
to the trajectory weight is just L̃N (x[t1 : t2]). Note that in
our case, this likelihood has a simple form. Only one vari-
able can change during an iteration of the algorithm and it
must change at the end of the time interval.

For variables that are forced to transition due to upcoming
evidence, things are slightly more complicated. Each time
we add a new transition to the trajectory, we advance time
from t to t + ∆t. For each variable x whose “next time”
was sampled from a truncated exponential distribution, we
must update the weight of trajectory to reflect the likelihood

ratio for x[t : t + ∆t]. Each such variable can be considered
separately as their times are sampled independently.

If the variable is part of the transition, the weight must
be multiplied by the probability of sampling the transition in
PN divided by the the probability in the sampling algorithm.
The former is an exponential distribution and the latter is the
same exponential distribution, truncated to be less than te−t.
The ratio of these two probabilities is 1 − exp(−q(te − t)),
where q is the relevant intensity.

Otherwise, the next time for the variable was sampled
from a truncated exponential but was longer than ∆t. In this
case, the ratio of the probabilities of a sample being greater
than ∆t is 1−exp(−q(te−t))

1−exp(−q(te−t−∆t)) . Note that when ∆t is small
(relative to te − t, the time to the next evidence point for
this variable), the ratio is almost 1. So, while the trajectory’s
weight is multiplied by this ratio for every transition for ev-
ery variable that does not agree with the evidence, it does
not overly reduce the weight of the entire trajectory.

The algorithm for CTBN importance sampling is shown
in Figure 2. To more easily describe the evidence, we define
a few helper functions:
eval

X (t) is the value of X at time t according to the evidence,
or undefined if X has no evidence at t.

etime
X (t) is the first time after t when eval

X (t) is defined.
eend

X (t) is the first time after or equal to t when eval
X (t)

changes value or becomes undefined.
Note that eend

X (t) = t when there is point evidence at t,
when t is the end of an interval of evidence, and when there
is a transition in the evidence at time t.

The line numbers follow those given in the forward sam-
pling algorithm with new or changed lines marked with an
asterisk. Time(X) might be set to the end of an interval of
evidence which is not a transition time but simply a time
when we need to resample a next potential transition. This
means that we will not update σ with a new transition every
time through the loop. The algorithm differs from the for-
ward sampling procedure as follows. Step 2 now accounts
for evidence at the beginning of the trajectory (using stan-
dard likelihood weighting for Bayesian networks). In step
3, we draw ∆t from the truncated exponential if the current
value disagrees with upcoming evidence. If the current evi-
dence includes this variable, ∆t is set to the duration of such
evidence. Step 5 updates the weights using the procedure
Update-Weight. Finally, step 7 now deals with variables that
are just leaving the evidence set.

3.5 Predictive Lookahead

The algorithm in Figure 2 draws the next state for a variable
from the same distribution as the forward sampling algo-
rithm. This may cause a variable to transition several times
in a short interval before evidence as the variable “searches”
to find a way to transition into the evidence. Thus, we may
generate many unlikely samples, making the algorithm inef-
ficient. We can help mitigate this problem by trying to force
the variable into a state that will lead to the evidence.

When sampling the next state for variable X at time
t, instead of sampling from the multinomial according to
θx(t)|uX(t), we would like to sample from the distribution of

Procedure CTBN-Importance-Sample(tend, e)
1. t← 0, σ← ∅, w ← 1 *
2. For each variable X ∈X

If e
val
X (0) defined, set x(0)← e

val
X (0),

and then set w← w · θB
x(0)|paB(0) *

Else choose state x(0) according to θB
X|paB(X)

Loop:
3. For each X ∈ X such that Time(X) is undefined:

If e
val
X (t) is defined, set ∆t← e

end
X (t)− t *

Elseif e
val
X (te) is defined where

te = e
time
X (t), x(t) 6= e

val
X (te),

choose ∆t from an exponential distribution with
parameter qx(t)|uX(t) given ∆t < (te − t). *

Else choose ∆t from an exponential w/ param. qx(t)|uX (t)

Define Time(X)← t + ∆t
4. Let X = arg minX∈X [Time(X)]
5. If Time(X) ≥ tend

w← Update-Weight(X, w, t, tend) *
return (σ, w)

Else *
w← Update-Weight(X, w, t, Time(X)) *

6. Update t← Time(X)
7. If e

end
X (t) 6= t or e

val
X (t) is defined *

If e
val
X (t) is defined, set x(t)← e

val
X (t) *

Else choose x(t), the next value of X , from a
multinomial with parameter θx(t)|uX (t)

Add 〈X ← x(t), t〉 to σ.
Undefine Time(X) and Time(Y) for all variables Y
for which X ∈ UY

Else *
Undefine Time(X). *

Procedure Update-Weight(Y, w, t1, t2)
1. For each X ∈ X such that eval

X (t) is defined for t ∈ [t1, t2):
w ← w · L̃X(x[t1 : t2])

2. For each X ∈ X such that eval
X (te) is defined,

where te = e
time
X (t1), and x(t1) 6= e

val
X (te):

If X = Y , w ← w · (1 − exp(−qx(t1)|uX(t1)(te − t1)))

Else w ← w ·
1−exp(−qx(t1)|uX (t1)(te−t1))

1−exp(−qx(t1)|uX (t1)(te−t2))

3. return w

Figure 2: Importance sampling for CTBNs

the next state conditioned on the upcoming evidence. Sup-
pose X is in state xi at time t, and the next evidence for X
is state xk at te. Assuming the parents of X do not change
before te and ignoring evidence over the children of X , the
distribution of the state of X at t given only the evidence is
b = exp(−QX(te − t))δk, where δk is the vector of zeros
with a single one at element k. The probability that X shifts
from xi = x(t) to xj is βi,j = bjqxixj

/
∑

k 6=i bkqxixk
. We

can therefore select our new state according to the distribu-
tion of βi and, assuming state xj is selected, multiply the
weight by

θxixj |uX (t)

βi,j
to account for the difference between

the target and sampling distributions.

3.6 Particle Filtering
The algorithm in Figure 2 allows us to generate a single tra-
jectory and its weight, given the evidence. To apply this al-

Procedure CTBN-Particle-Filtering({X i
0, w

i
0}i=1...N , tend, e)

1. k ← 0, Wt ← 1, Nr ← N
2. For i← 1 to N : Pai

0 ← i, wi ← 1/N
Loop:
3. For each i such that ti

k < tend :
(Xi

k+1, t
i
k+1, w

i
k+1)←

Sample-Segment(XPai
k

k , t
Pai

k

k , wi, tend, e)
If ti

k+1 ≥ tend

Nremain ← Nr − 1,
Wt ←Wt −wi

k+1

4. k ← k + 1
5. If Nr = 0

return {Xi
mi

, ti
mi

, wi
mi

, Pai
mi
}i=1...N,mi=1...ni

,
where ni is the number of transitions of the ith particle

6. Calculate N̂eff of all incomplete particles
7. If N̂eff < Nthr

Sample Pai
k according to wi

k

wi ←Wt × 1/Nr

Else
wi ← wi

k, Pai
k ← Pai

k−1

Figure 3: Particle Filtering for CTBNs

gorithm to the task of online inference in a dynamic system,
we can generate multiple trajectories in parallel, advancing
time forward as evidence is obtained.

The resulting algorithm is an instance of sequential im-
portance sampling, and therefore suffers from its character-
istic flaw: As the trajectory length increases, the distribution
of the importance weights gets increasingly skewed, with
most importance weights converging to zero exponentially
quickly. Thus, the number of “relevant” samples gets in-
creasingly small, and the estimates provided by the set of
samples quickly become meaningless. A family of meth-
ods, commonly known as sequential Monte Carlo or particle
filtering (Doucet, de Freitas, & Gordon 2001), have been
proposed in the setting of discrete-time processes to address
this flaw. At a high level, these methods re-apportion our
samples to focus more efforts on more relevant samples —
those with higher weight.

The application of this idea to our setting introduces some
subtleties because different samples are not generally syn-
chronized. We could pick a time t and run the algorithm in
Figure 2 with tend = t so that samples are synchronized at t.
We would re-apportion the weights and continue each trajec-
tory from its state at t, first setting Time(X) to be undefined
for all X . However, choosing the proper synchronization
time t is a non-trivial problem which may depend on the ev-
idence and the speed the system evolves.

Instead of synchronizing all the particles by the time, we
can align particles by the number of transitions. If we let ti

be the ith transition time and Xi be the value of X from ti−1

to ti, the following recursion holds.

P (X1:n, t1:n, e[0:tn)) = P (X1:n−1, t1:n−1, e[0:tn−1))

× P (Xn|Xn−1)P (X[tn−1,tn), e[tn−1,tn)|Xn−1, etn−1)

Thus, to sample multiple trajectories in parallel, we ap-
ply the CTBN importance sampling algorithm to each tra-

jectory until a transition occurs. To avoid the degeneracy of
the weights, we resample the particles when the estimated
effective sample size N̂eff = 1P

i
(wi

k
)2

is below a threshold
Nthr. This procedure is similar to the regular particle filter-
ing algorithm except that all particles are not synchronized
by time but the number of transitions. To answer queries in
the time interval [0, T), we propagate the particles until all
of their last transitions are greater than T .

Figure 3 shows the algorithm for generating N trajecto-
ries from 0 to T in a CTBN. It assumes that the initial val-
ues and the weights have already been sampled. The pro-
cedure Sample-Segment loops from line 3 to 7 in Figure 2
until a transition occurs, returns the transition time and vari-
ables value, and updates the corresponding weight for that
segment. Note that we are approximating the distribution
P (X1:n, t1:n, e[0:tn)) for all possible n. Therefore, we only
propagate and re-apportion weights for particles that have
not yet reached time T . Particles that have been sampled
past T are left untouched.

3.7 Particle Smoothing
Although the resampling step in the particle filtering algo-
rithm reduces the skew of the weights, it leads to another
problem: the diversity of the trajectories is also reduced
since particles with higher weights are likely to be dupli-
cated multiple times in the resampling step. Many trajecto-
ries share the same ancestor after the filtering procedure. A
Monte Carlo smoothing algorithm using backward simula-
tion addresses this problem (Godsill, Doucet, & West 2004).

The smoothing algorithm generates trajectories using N
weighted particles {xi

t, w
i
t} using the particle filtering algo-

rithm. It starts with the particles at time T , moves back-
ward one step each time and samples a particle according
to the product of its weight and the probability of it transi-
tioning to the previously sampled particle. Specifically, in
the first step, it samples x̃T from particles xi

T at time T with
probability wi

T . In the backward smoothing steps it samples
x̃t according to wi

t|t+1 = wi
tf(x̃t+1|x

i
t), where f(x̃t+1|x

i
t)

is the probability that the particle transitions from state xi
t

to x̃t+1. The resulting trajectories are an approximation of
P (x1:T |y1:T) where y1:T is the observation.

This idea can be used in our setting with some modifica-
tion. Given the filtered particles {X i

mi
, timi

, wi
mi

},we need
to sample both variable values and transition time at each
step when we move backward. There are two main differ-
ences from the algorithm in Godsill, Doucet, & West (2004):
There are fewer than N particles that can be used at the be-
ginning steps of the backward smoothing since the trajec-
tories do not have exactly the same number of transitions,
and not all particles at step n can be considered as can-
didates to move backward. A particle {X i

n, tin, wi
n} is a

valid candidate as the predecessor for {X̃n+1, t̃n+1} only
if (1) tin < t̃n+1, (2) the values of X i

n and X̃n+1 differ in
only one variable (thus a single transition is possible), and
(3) e(ti

n,etn+1)
contains no transitions.

Figure 4 shows the smoothing algorithm which gener-
ates a trajectory from the filtering particles. We apply
the algorithm N times to sample N trajectories. These

Procedure CTBN-Particle-Smoothing({X i
mi

, ti
mi

, wi
mi
}, tend, e)

i = 1 . . . N, mi = 1 . . . Mi

1. σ ← ∅
2. Choose k with probability wMi

i

3. set Y = XMk
k

, s←Mk, t← tk
s

Loop:
4. σ[ts−1,s) ← Y
5. If σ is complete

return σ
6. For j ← 1 to N

w′
j ← Check-Weight(Y, t, Xj

s−1, t
j
s−1, w

j
s−1)

7. Choose i with probability w′
i

8. S ← S − 1, Y ← Xs
i , t← tj

s

Procedure Check-Weight(X, t, Xs, ts, ws)
1. If t ≤ ts or e(ts,t) contains a transition, or

the value of X and Xs do not differ by only one variable
return 0

2. σ[ts,t) ← Xs, σ(t)← X

3. w← ws · L̃X (σ[ts,t2])
4. return w

Figure 4: Particle Smoothing for CTBNs

equally weighted trajectories can be used to approximate the
smoothing distribution P (X[0,T)|e). Generating one trajec-
tory with this smoothing process requires considering all the
particles at each step. The running time of sampling N tra-
jectories using particle smoothing is N times of that of par-
ticle filtering.

4 Experimental Results
To test our algorithms, we used two CTBN networks: the
drug effect network in Nodelman, Shelton, & Koller (2002)
and a chain-structured network. Both are at the limit for the
exact inference algorithm.

We first tested the importance sampling algorithm and the
predictive lookahead modification using the drug effect net-
work. It has 8 (mostly binary) variables modeling the effect
of a pain-relief medicine. At t = 0 the person is not hun-
gry, is not eating, has an empty stomach and is not drowsy.
He has joint pain due to the falling barometric pressure and
takes the drug to alleviate the pain. We set the observed evi-
dence: on t = [0, 1) the stomach is empty, on t = [0.5, 1.2)
the barometer is falling, and on t = [1.5, 2.5) he is drowsy.
Our query is the total amount of time that the person has no
joint pain on [0, 2.5). (The true value is 0.1093). We ran
the two algorithms with sample sizes, M , from 5 to 90000.
For each sample size, we ran the algorithms 1000 times. We
calculated our query according to Equation 3 and compared
the result to the true value calculated using exact inference.
We evaluated the two algorithms in two ways: the relative
bias |v̄M−v∗|

v∗ , where v̄M is the average query value of the
1000 runs with sample size M , and v∗ is the true value; and
the relative standard deviation σM

v∗ where σM is the standard
deviation when sample size is M .

The results are shown in Figure 5. The bias and standard
deviation decease at a rate of O(1√

M
) (shown by the thin

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

Number of Samples

R
el

at
iv

e
B

ia
s

non−predict
predict
O(M −1/2)

10
1

10
2

10
3

10
4

10
5

10
−2

10
−1

10
0

Number of Samples

R
el

at
iv

e
S

ta
nd

ar
d

D
ev

ia
tio

n

non−predict
predict
O(M −1/2)

Figure 5: Relative bias and standard deviation of sampling.

10
0

10
2

10
−0.8

10
−0.5

10
−0.2

10
0.1

Running Time, seconds

K
L−

D
iv

er
ge

nc
e

Filtering
Smoothing
Importace Sampling

10
0

10
2

10
−0.5

10
−0.3

10
−0.1

10
0.1

Running Time, seconds

K
L−

D
iv

er
ge

nc
e

Filtering
Smoothing
Importace Sampling

(a) T = 3 (b) T = 3

10
0

10
2

10
−2

10
−1

10
0

Running Time, seconds

K
L−

D
iv

er
ge

nc
e

Filtering
Smoothing
Importace Sampling

10
0

10
2

10
4

10
0

Running Time, seconds

K
L−

D
iv

er
ge

nc
e

Filtering
Smoothing
Importace Sampling

(c) T = 6 (d) T = 9

Figure 6: Time-efficiency comparison.

solid lines). The sampling algorithm with prediction outper-
forms the non-prediction version.

We then used the chain network to evaluate the efficiency
of importance sampling, particle filtering, and smooth-
ing algorithms. The chain network contains five nodes
X0, . . . , X4, where Xi is the parent of Xi+1 for i < 4. Each
node has five states, s0, . . . , s4. X0 (usually) cycles in two
loops: s0 → s1 → s3 → s0 and s0 → s2 → s4 → s0. All
the other nodes stay at their current state if it matches their
parent and otherwise transition to their parents’ state with
high intensity. Each variable starts in state s0. Note that this
is a difficult case with near determinism. We only observe
the behavior of X4 and set our query to be P (X2(

T
2)|e[0,T))

where T = 3, 6, 9. We recorded the mean running time and
KL-divergence between the estimated and true distributions,
for each sample size across 300 trials.

Figure 6 shows the efficiency of the three algorithms. In
Figure 6(a), we use simple evidence: only part of the behav-
ior of X4 is observed: on [1, 1.7), X4 = s3, and on [2, 2.5),
X4 = s2. In Figure 6 (b)-(d), the behavior of X4 is fully
observed during the interval [0, T): we sampled a trajectory
from 0 to T and kept only the information about X4. In all
four cases, the particle filtering and smoothing algorithms
both outperform the importance sampling algorithm when
the sample size is small (small running time). For simple
evidence (Figure 6(a)), the importance sampling algorithm

achieves comparable performance when the sample size is
large. When the evidence is complicated (Figure 6 (b)-(d)),
the error of importance sampling is large even we use very
large sample sizes. When the trajectory is short, the particle
filtering algorithm is slightly better than the particle smooth-
ing algorithm. This is because the filtering algorithm can
generate more samples than the smoothing algorithm with
the same running time. However, as the trajectory length in-
creases, the particle smoothing algorithm then outperforms
the filtering algorithm due to particle diversity problems.

We also compared the three sampling algorithm to the ap-
proximate inference algorithm based on expectation propa-
gation in Saria, Nodelman, & Koller (2007). We did not use
their adaptive splitting method (for reasons we explain be-
low). Even without the adaptive splitting, their method still
differs from that of Nodelman, Koller, & Shelton (2005), in
that it allows asynchronous propagation of messages along
time.

We used the same evidence on the effective drug network
and answered two queries: the total amount of time that the
concentration is low and the total amount of time the person
has no joint pain. For the EP algorithm, we first tried seg-
mentations that were split at the evidence. We then gradually
decreased the time interval of the segments to 0.15. The re-
sults of accuracy with respect to running time are shown in
Figure 7. The importance sampling algorithm outperforms
the EP algorithm in answering query about concentration (a
variable in the center of the network) and is only slightly
less efficient than the EP algorithm in answering the query
about the joint pain (a variable at the edge). Among the sam-
pling based algorithms, the importance sampling algorithm
performs the best and the smoothing algorithm is the worst.
This is not surprising given that most of the nodes are binary.
At each transition time, the sampled trajectory has no choice
as to the next state. Therefore, smoothing (or filtering) has
less effect as there is no need to intelligently select the next
state. However, the extra computation time for resampling
and backward simulation makes the filtering and smoothing
algorithm less efficient.

As mentioned above, we did not employ the adaptive
splitting method of Saria, Nodelman, & Koller (2007). It
would not have changed our results much. The left-most
points in our EP plots correspond to the minimum number of
splits. (They are as fast as possible.) The right-most points
of the EP plots correspond to many fine splits, and are about
as accurate as possible, and we can see that the accuracy
has flattened out. So, while the horizontal widths of the EP
curves would have been shortened (by allowing for the better
accuracy in less time), the vertical spread would have been
approximately the same. In neither plot of Figure 7 would
this have made a large difference in the comparisons to our
sampling method.

5 Conclusion
The networks used in this paper are at the upper size limit
for exact computation. Thus, approximate inference meth-
ods are critical for tracking, prediction, and learning in con-
tinuous time Bayesian networks for real applications. Our
importance sampling, filtering, and smoothing algorithms

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Running Time, seconds

R
el

at
iv

e
B

ia
s

Filtering
Smoothing
Importace Sampling
CTBN−EP

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

Running Time, seconds

R
el

at
iv

e
B

ia
s

Filtering
Smoothing
Importace Sampling
CTBN−EP

(a) Concentration (b) Joint pain

Figure 7: Comparison to expectation propagation.

are fast, simple to implement and can be used to calculate
the expected value of any function of the trajectory, includ-
ing the expected sufficient statistics necessary for employing
expectation maximization for learning with missing data.

6 Acknowledgments
We would like to thank Uri Nodelman for his invaluable
comments and suggestions throughout the development of
this paper. We would also like to thank Daphne Koller for
her helpful reviews of initial versions of the work and Suchi
Saria for sharing her CTBN EP code. This work was funded
by the DAF Air Force Office of Scientific Research (Young
Investigator Award #FA9550-07-1-0076) and Intel Corpora-
tion.

References
Doucet, A.; de Freitas, N.; and Gordon, N., eds. 2001.
Sequential Monte Carlo Methods in Practice. Springer-
Verlag Telos.
Fung, R. M., and Chang, K.-C. 1989. Weighing and inte-
grating evidence for stochastic simulation in Bayesian net-
works. In UAI, 209–220.
Godsill, S.; Doucet, A.; and West, M. 2004. Monte carlo
smoothing for non-linear time series. Journal of the Amer-
ican Statistical Association 99:156–168.
Herbrich, R.; Graepel, T.; and Murphy, B. 2004. Structure
from failure. unpublished.
Hesterberg, T. 1995. Weighted average importance sam-
pling and defensive mixture distributions. Technometrics
37(2):185–194.
Minka, T. P. 2001. Expectation propagation for approxi-
mate Bayesian inference. In UAI, 362–369.
Ng, B.; Pfeffer, A.; and Dearden, R. 2005. Continuous
time particle filtering. In IJCAI.
Nodelman, U., and Horvitz, E. 2003. Continuous time
Bayesian networks for inferring users’ presence and activi-
ties with extensions for modeling and evaluation. Technical
Report MSR-TR-2003-97, Microsoft Research.
Nodelman, U.; Koller, D.; and Shelton, C. R. 2005. Expec-
tation propagation for continuous time Bayesian networks.
In UAI, 431–440.
Nodelman, U.; Shelton, C. R.; and Koller, D. 2002. Con-
tinuous time Bayesian networks. In UAI, 378–387.

Nodelman, U.; Shelton, C. R.; and Koller, D. 2003. Learn-
ing continuous time Bayesian networks. In UAI, 451–458.
Saria, S.; Nodelman, U.; and Koller, D. 2007. Reasoning
at the right time granularity. In UAI.
Shachter, R. D., and Peot, M. A. 1989. Simulation ap-
proaches to general probabilistic inference on belief net-
works. In UAI, 221–234.

