
Minimal Residual Approaches for Policy Evaluation in Large Sparse Markov
Chains

Yao Hengshuai Liu Zhiqiang
School of Creative Media, City University of Hong Kong

Tat Chee Avenue, Kowloon, Hong Kong, S.A.R., P.R. CHINA
hengshuai@gmail.com

Abstract

We consider the problem of policy evaluation in a special
class of Markov Decision Processes (MDPs) where the un-
derlying Markov chains are large and sparse. We start from
a stationary model equation that the limit of Temporal Differ-
ence (TD) learning satisfies, and develop a Robbins-Monro
method consistently estimating its coefficients. Then we in-
troduce the minimal residual approaches, which solve an ap-
proximate version of the stationary model equation. Incre-
mental Least-squares temporal difference (iLSTD) is shown
to be a special form of minimal residual approaches. We also
develop a new algorithm called minimal residual (MR) algo-
rithm whose step-size can be computed on line. We intro-
duce the Compressed Sparse Row (CSR) format and reduce
the complexity of MR to near that of TD. The advantages of
the MR algorithm are that it has comparable data efficiency
and computational efficiency to iLSTD, but does not require
manual selection of step-size.

1 Introduction
In the practice of reinforcement learning (RL), the problems
often have a large state space. If the state is represented by
the lookup table, the dimension of the feature vector equals
the number of states. For problems with a large state space,
this will cause what is called Bellman’s curse of dimension-
ality (Bertsekas & Tsitsiklis 1996). To tackle this problem,
people use function approximation (Bertsekas & Tsitsiklis
1996; Sutton & Barto 1998). However, for complex tasks,
the number of features is still not too small, which leads to a
high-dimensional feature vector.

In this paper, we consider a special class of RL tasks,
where transitions among states are sparse, in the sense that
each predecessor has only a few successors. Many RL tasks
were found to have this feature (Moore & Atkeson 1993).
Examples are Sutton’s random walks (Sutton 1988), Boyan
chain example (Boyan 1999;2002), and some continuous
tasks solved by discretization such as cart-pole balancing
task, etc.. For simplicity, we focus only on the Markov Deci-
sion Processes (MDPs) in this paper. Extensions to general
reinforcement learning can be easily made following similar
procedures in (Lagoudakis & Parr 2002).

We assume that each state is visited infinitely often as long
as the simulation stage of the MDPs is infinitely long. An-

Copyright c© 2007, authors listed above. All rights reserved.

other assumption is that the linear function approximation
used does not vary the sparse nature of the Markov chain,
i.e., the feature of each state is also sparse. While this seems
a restrictive condition, several popular linear function ap-
proximation schemes such as Sutton’s lookup table (Sutton
1988), Boyan’s linear interpolation approximation (Boyan
1999;2002), and tile coding (Sutton & Barto 1998) are in-
deed sparse (Geramifard, Bowling, & Sutton 2006).

We are motivated by recent work on data efficiency and
computational efficiency of RL algorithms. Boyan proposed
Least-squares temporal difference (LSTD) learning to im-
prove the data efficiency of temporal difference (TD) learn-
ing, but the computation cost of LSTD is quite high, which
generally requires O(K3) per time step, where K is the
number of features (Boyan 1999;2002). Recursive LSTD
(RLSTD) iteratively computes the inversion of some ma-
trix and reduces the complexity to O(K2) (Bradtke & Barto
1996). A remarkable merit of LSTD is that it has no param-
eter to tune by hand. This feature makes the algorithm quite
convenient for users, and very useful when the domains are
complex.

Incremental LSTD (iLSTD) is a new algorithm (Geram-
ifard, Bowling, & Sutton 2006), recently proposed to strive
a balance between LSTD and TD. Its predictions are almost
as accurate as LSTD, but its computational cost is consider-
ably lower. For sparse RL tasks, the complexity of iLSTD is
only slightly higher than TD. They showed that iLSTD can
be more efficient by updating only a small portion of states
with the largest TD updates. This paper inducts the role of a
key vector used by iLSTD, and proves that iLSTD is a spe-
cial minimal residual approach. iLSTD also requires tuning
the step-size by hand, which involves experimentally finding
two constant parameters.

This paper has the same research target with iLSTD, but is
built on a more general setting, and aims to develop an algo-
rithm that alleviates the labor of parameter tuning as LSTD
does. We introduce a class of minimal residual approaches
that include iLSTD and a new algorithm, which we call min-
imal residual (MR) algorithm. The step-size of MR can be
computed on line and does not require selecting manually.
Moreover, we also develop a new method to reduce the com-
plexity of MR to near that of TD. Our method is built on the
compressed storage scheme of sparse matrix, and seems to
be applicable to other RL algorithms. Specifically, we use

the Compressed Sparse Row (CSR) format to store a sparse
matrix involved in MR. Based on CSR, the complexity of
MR per time step is reduced to O(qK), where q is a small
positive real related to the sparsity of the matrix used by MR.

In the remaining of this section, we define a stationary
model equation and review recent results on it. In Sec-
tion 2, we define the stochastic model equation and use a
Robbins-Monro (RM) procedure to estimate its coefficients
on line. We also prove the consistency of the RM proce-
dure in this section. In Section 3, we introduce the gen-
eral minimal residual approaches, which solve the stochastic
model equation according to the latest residual. It is shown
that iLSTD is a special form of the minimal residual ap-
proaches. We continue with developing a minimal residual
(MR) algorithm that uses a new rule of step-size. In Sec-
tion 4, we introduce the CSR format and the efficient imple-
mentation of MR. In Section 5, we compare MR algorithm
with TD/LSTD/iLSTD on Boyan chain example. Results
show that MR achieves similar performances with iLSTD: it
has comparable data efficiency with LSTD, but its computa-
tional complexity is only slightly higher than TD. Finally in
Section 6, we discuss some future directions.

1.1 Stationary model equation
Assume we have a state space S = {1, 2, . . . , N}. The
problem of policy evaluation, or learning to predict, is for-
malized as predicting the long-term optimal reward for each
state as the agent interacts with the environment. In particu-
lar, the long-term optimal reward for state s is

J(s) =
∞∑

k=0

γkr(sk, sk+1), s0 = s,

where r(sk, sk+1) is the reward received by the agent at time
k, and γ ∈ (0, 1] is the discount factor.

We consider a linear function approximation. Given
K(K ≤ N) feature functions,

ϕk (·) : S 7→ RK , k = 1, . . . , K,

we define the following feature vector:

φ(si) = [ϕ1(si), ϕ2(si), . . . , ϕK(si)]′.

For simplicity, we will denote φ(si) as φi. The long-term
optimal reward vector can now be approximated by Ĵ =
Φw, where w is the weight vector to be learned, and

Φ′(k, j) = ϕk(j), k = 1, . . . , K; j = 1, . . . , N.

For an ergodic Markov chain that has steady-state proba-
bilities π(1), π(2), . . . , π(N), Tsitsiklis and Van Roy (1997)
proved that TD finally finds a weight vector w∗ that satisfies
a linear system of equations:

Aw∗ + b = 0, (1)

where A and b are defined by

A = Φ′D(γP − I)
∞∑

k=0

(λγP)kΦ,

and

b = Φ′D
∞∑

k=0

(λγP)kr̄,

D is the diagonal matrix with diagonal entries π(i), i =
1, . . . , N ; λ ∈ [0, 1] is the eligibility trace factor; P is the
transition probability matrix of the Markov chain; I is the
identity matrix; and r̄ is the vector with components r̄i =∑N

j=1 Pi,jr(i, j), i = 1, . . . , N . For each λ ∈ [0, 1], w∗ is
also the limit point of LSTD(λ) and iLSTD(λ) .

However, the difficulty with reinforcement learning is that
the coefficients of (1) are not explicitly known, due to the un-
availability of the model in terms of P and r̄. Thus equation
(1) only serves for analysis and not applicable in practice.
We will call (1) the stationary model equation.

1.2 Law of Large Numbers
The basic idea of LSTD is to accumulate the experience as
the agent explores in the environment. This process grows
some data structure that stores the experience. If the current
transitioning from st to st+1 incurs a reward rt, a matrix and
a vector are updated by

{
Ãt+1 = Ãt + ∆Ãt

b̃t+1 = b̃t + ∆b̃t,
(2)

where
∆Ãt = zt(γφ(st+1)− φ(st))′, (3)

∆b̃t = ztrt, (4)
zt is the eligibility trace updated by

zt+1 = λzt + φt+1.

Because the components of Ãt+1 and b̃t+1 can get to in-
finity, and not eligible for theoretical analysis, it is better to
use some well-define term. For infinite horizon problems
simulated by a single trajectory that is long enough, Tadić
(2001) and Nedić & Bertsekas (2003) used the following
normalized data structure,

{
At+1 = 1

t+1 Ãt+1

bt+1 = 1
t+1 b̃t+1.

(5)

They independently proved that (5) satisfies the law of large
number. To be precise, under certain conditions, the two es-
timations given by (5) converge with probability one to A
and b, respectively. Their ideas provide a starting point for
this paper, but the limitation of (5) is that the two estima-
tions can not be applied to finite horizon problems such as
Sutton’s random walks (Sutton 1988) and Boyan chain ex-
ample (Boyan 1999;2002).

2 Stochastic model equation
In this section, we extend (5) to finite horizon problem. Typ-
ically the finite horizon problem here is generated by absorb-
ing MDPs. For simplicity, we focus only on λ = 0. Given
an initial state s0, each simulation stage of the absorbing
MDPs generates a finite trajectory s0, . . . , sq, where sq is
the absorbing state. Assume we have M trajectories and the

mth trajectory is of length Lm. In this case, a consistent
estimation of A would be

AM =
1
T

M∑
m=1

Lm∑

k=0

φk(γφ(sk+1)− φ(sk))′, (6)

where T is the number of all observed state visits in M tra-
jectories. Similarly, we define

bM =
1
T

M∑
m=1

Lm∑

k=0

φkrk. (7)

We then have the following lemma and theorem.

Lemma 1. Assume the Markov chain is ergodic. Also as-
sume that in all M trajectories, fi(T) is the number of times
that state i is visited; fij(T) is the number of times that state
i transitions to state j . We have

fi(T)
T

→ π(i), T →∞, w .p.1 . ∀i ∈ S.

fij(T)
fi(T)

→ Pij , T →∞, w .p.1 . ∀i, j ∈ S.

Proof. The essence of this lemma is based on the law of
large numbers. Similar arguments can be made according to
those in Lemma 4.2(a) by Nedić and Bertsekas (2003).

Theorem 1. Assume matrix Φ has full column rank. For
ergodic Markov chains, the following relations hold:

(a). Let DM and A
(1)
M be defined as follows:

DM =
1
T

M∑
m=1

Lm∑

k=0

φkφ′k, (8)

A
(1)
M =

1
T

M∑
m=1

Lm∑

k=0

φkφ′k+1. (9)

Then as M →∞, we have

DM → Φ′DΦ, w .p.1 ,

A
(1)
M → Φ′DPΦ, w .p.1 .

(b). AM → A,w .p.1 , and bM → b, M →∞, w.p.1.

Proof. Proof of (a). We rewrite DM as

1
T

M∑
m=1

Lm∑

k=0

φkφ′k =
1
T

M∑
m=1

Lm∑

k=0

φk · 1 · φ′k.

Observing that the scalar 1 can be written as

1 = [0, . . . , 1, . . . , 0][0, . . . , 1, . . . , 0]′
sk sk

,

where the unit vector is of length N . Therefore, we have

1
T

M∑
m=1

Lm∑

k=0

φkφ′k = Φ′
[
fsk

(T)
T

]

sk,sk

Φ,

where [x]i,i stands for a diagonal matrix whose (i, i)th entry
is x. According to Lemma 1, we arrive that Dt+1 → Φ′DΦ,
w.p.1.

Next we prove (9).

A
(1)
M = Φ′

[
fsk,sk+1(T)

T

]

sk,sk+1

Φ

= Φ′
[
fsk,sk+1(T)

fsk
(T)

· fsk
(T)
T

]

sk,sk+1

Φ

Lemma1−→ Φ′DPΦ.

Proof of (b). Here we only prove for AM . The analy-
sis of bM is similar. The proof of (b) is direct from (a) by
observing that AM = −DM + γA

(1)
M .

Estimations (6) and (7) can also be updated in an iterative
manner immediately after a transition, which is a Robbins-
Monro procedure. After a transition from st to st+1, we
update our estimations by

At+1 = At +
1
T

(φt(γφt+1 − φt)′ −At), (10)

and

bt+1 = bt +
1
T

(φtrt − bt), (11)

where T is the total number of state visits. After (10) and
(11), T is updated by T = T + 1. Note that the subscript of
A and b here becomes the transition index. Without special
note, we will use this convention in the remaining of this
paper.

Theorem 1 tells that although the stationary model equa-
tion is not explicitly known or of practical use, we can get
an approximation of it by estimating its coefficients. In the
following we define an approximate version of the station-
ary model equation that is of practical use, which provides a
ground for our later approaches.

Definition 1 (Stochastic model equation). Given At+1 and
bt+1 defined by (10) and (11), we call the equation

At+1w + bt+1 = 0,

the stochastic model equation.

Another motivation for defining the stochastic model
equation is that it relates the learning of the weight vector to
the accumulated experience contained in the data structure
(At+1, bt+1). By the stochastic model equation, the expe-
rience of agent is passed to the weight vector. In this way,
experience is finally availed for prediction. As At+1 and
bt+1 become more accurate, the solution of the stochastic
model equation will also solve the stationary model equa-
tion in more accuracy. Thus we learn the optimal weights by
solving the stochastic model equation. To do this, we intro-
duce the general minimal residual approaches that minimize
some residual error at each time step.

3 Minimal Residual Approaches
Given the current estimations of A, b and w, we have a resid-
ual vector,

δt = At+1wt + bt+1. (12)

This residual stands for the difference between the two sides
of the stochastic model equation. The general minimal resid-
ual approach is cast as

wt+1 = wt + αtδt, (13)

where αt is some step-size. Because At+1 converges to the
negative definite matrix A with probability one, the step-size
is required to be positive in order to guarantee the conver-
gence of the algorithm.

At time t, the general minimal residual approach mini-
mizes the residual error ||δt||22. Therefore, the difference be-
tween the two sides of the stochastic model equation is grad-
ually reduced. As this difference is progressively approach-
ing that between the stationary model equation, the weight
vector learned by minimal residual approach will solve the
stationary model equation in the long run.

3.1 iLSTD as a minimal residual approach
We show that iLSTD is a special minimal residual approach,
of the form given by (12) and (13).

The original induction of iLSTD is given in (Geramifard,
Bowling, and Sutton 2006). They also have an advanced
version with higher computational efficiency, which will be
considered in Section 4. At time t, after steps (2), (3) and
(4), a vector µ is updated for the first time:

µt(wt) = µt−1(wt) + ∆Ãtwt + ∆b̃t. (14)

And the update of the weight vector follows after the first
update of µ:

∆wt = ᾱtµt,

where ᾱt is some diminishing step-size.
After the weight update, vector µ is updated for the sec-

ond time:

µt(wt+1) = µt(wt) + Ãt+1∆wt. (15)

It is not clear what the function of µ is by this induction.
Here we induct that µ(wt)/T is an estimation of At+1wt +
bt+1.

First let us define µk = µk(wk). According to equations
(14) and (15), we have

µk+1 = µk(wk+1) + ∆Ãk+1wk+1 + ∆b̃k+1

= µk + Ãk+1∆wk + ∆Ãk+1wk+1 + ∆b̃k+1.

Writing ∆wk as wk+1 − wk, according to (2), (3) and (4),
we have

µk+1 = µk + Ãk+1(wk+1 − wk) + ∆Ãk+1wk+1 + ∆b̃k+1

= µk + (Ãk+1 + ∆Ãk+1)wk+1 − Ãk+1wk + ∆b̃k+1

= µk + Ãk+2wk+1 − Ãk+1wk + ∆b̃k+1

= µk + (Ãk+2wk+1 + b̃k+2)− (Ãk+1wk + b̃k+1).

Thus we get the relation of µk and µk−1, described by:

µk = µk−1 + (Ãk+1wk + b̃k+1)− (Ãkwk−1 + b̃k). (16)

Summing both sides of equation (16) for k = 1, . . . , t, we
have

µt = µ0 + Ãt+1wt + b̃t+1 − (A0w0 + b0). (17)

Dividing both sides of equation (17) by T , producing:

µt

T
=

µ0 − (A0w0 + b0) + Ãt+1wt + b̃t+1

T
.

According to Theorem 1, for large T , we have

µt

T
≈ Ãt+1wt + b̃t+1

T
= At+1wt + bt+1,

since the initial settings of µ0, w0, A0 and b0 are all finite.
In (Boyan 1999;2002) and (Geramifard, Bowling, & Sut-

ton 2006), the diminishing step-size is of the following form:

ᾱt =
c0c1

i + c1
, (18)

where i is the trajectory index. Thus iLSTD using (18) is a
special case of (13), whose step-size is

αt =
c0c1T

i + c1
. (19)

This step-size has two parameters to be selected by hand,
and cannot be tuned on line, usually chosen by experimental
finding.

We have in fact proved the following theorem.

Theorem 2. iLSTD using step-size (18) is a variant of the
general minimal residual approach given by (12) and (13),
taking the step-size from (19).

3.2 Minimal Residual (MR) algorithm
At time t, we actually get two residual vectors. The residual
δt is an “old” one, because it is obtained before the weight
update. After the weight update, another new residual vector

θt+1 = At+1wt+1 + bt+1,

is obtained using the latest weight vector. Because θt+1

stands for an improved difference between the two sides of
the stochastic model equation, naturally we hope that the
new residual error is smaller than the old one.

The new residual vector can be expressed in terms of the
old residual, as shown by the following induction:

θt+1 = At+1(wt + αtδt) + bt+1

= δt + αtAt+1δt,

where the first relation is according to equation (13). Thus
the three vectors: δt, θt+1, and αtAt+1δt form a triangle.

The derivation of the step-size is to require that θt+1 be
orthogonal to αtAt+1δt. Thus we are assured that the new
residual error is strictly smaller than the old one, i.e.,

||θt+1||22 < ||δt||22.

Figure 1: Derivation of the step-size and the projection pro-
cess.

Therefore, we require that

(αtAt+1δt)′θt+1 = 0,

which gives a new rule of step-size,

αt = − δ′tAt+1δt

(At+1δt)′(At+1δt)
. (20)

It is interesting to note that step-size (20) is positive in the
long run, because matrix At+1 is negative definite with prob-
ability one. This step-size is the optimal value of an opti-
mization problem that minimizes the new residual error over
α ∈ R, i.e.,

αt = min
α
||θt+1||2.

We call the minimal approach using step-size (20) the mini-
mal residual (MR) algorithm. At time t, the computing order
of MR can be specified as: (10)→(11)→(12)→(20)→(13).
We will call this type of MR the ordinary MR algorithm,
which contrasts to the compressed implementation of MR
algorithm in Section 4.

Assume δt is in the space L. By the adaptive step-size
(20), −αtAt+1δt is an orthogonal projection of δt onto the
space At+1L, as shown by Figure 1.

4 Efficient implementation
Note that steps (10), (12) and (20) are the most complex
steps in ordinary MR, which generally require O(K2) com-
plexity. However, if RL tasks have a sparse nature, the com-
plexity can be reduced. The key observation of (12) and (20)
is that the two steps are all matrix-vector multiplication, and
only nonzero entries of At+1 contribute to the weight vector.
Another perspective is that the zero entries of At+1 imply
that “no experience is available for the states related to these
entries”. Therefore, there is no need to store these void expe-
rience. We only have to store the valid experience contained
in At+1. Here we use the Compressed Sparse Row format,
which is widely used in the computation of sparse matrix
(Saad 2003). In addition, we use some algebraic tricks to
avoid explicit computation of (10) in this section.

4.1 Compressed Sparse Row (CSR) format
Assume lt is the number of nonzero entries in At. The Com-
pressed Sparse Row (CSR) format St

A, is composed of the
following data structure:
• a real array at of length lt, containing all the real values

of the nonzero elements of At, stored row by row;

Algorithm 1: Efficient computation of matrix-vector
multiplication using CSR.

Data: St+1
A and a vector βt

Result: A vector ot = At+1βt.
for k = 1, 2, . . . , K do

k1 = dt+1(k);
k2 = dt+1(k + 1)− 1;
ot(k) = at+1(k1 : k2)′βt(ct+1(k1 : k2)).

endfor

Algorithm 2: Efficient MR (λ = 0) using CSR.
Data: A Markov chain and a reward scheme that can be

both sampled on line; a feature scheme Φ.
Result: A weight vector w∗, such that ||Φw∗ − J ||2 is

minimized.
Initialize S0

A, b0 and w0 such that A0δ0 6= 0;
Set T = 0;
for trajectories m = 1, . . . , M do

Choose a start state s0 ∈ S;
Set z0 = φ0;
Set T = T + 1;
while st not at end of this trajectory do

Transition to the next state st+1 and receive a
reward rt;
Compute yt using Algorithm 1;
Update St

A; /*According to (10) */
Update bt+1 according to (11);
Compute xt+1 by (21);
Compute the step-size αt by equation (20);

/*equation (20) makes a call to Algorithm 1*/
Update wt+1 according to (22);
Set T = T + 1.

endw
endfor

• an integer array ct of length lt, containing the column in-
dices of the elements stored in at;

• a second integer array dt of length K + 1, containing the
pointers to the beginning of each row in at and ct. The
last element dt(K + 1) is always set to lt + 1.

4.2 Efficient MR Using CSR
Using CSR, it is very convenient to locate all nonzero entries
of At, which are stored in array at. The index of the first
nonzero entry in the kth row of At is given by dt(k), and
the index of the last nonzero entry in the kth row is given by
dt(k + 1) − 1. Thus the nonzero entries in the ith row are
at (dt(k)) , at(dt(k) + 1), . . . , at(dt(k + 1)− 1), which we
will denote as at(dt(k) : dt(k + 1)− 1) for simplicity.

Now we can efficiently compute the matrix-vector multi-
plication for sparse At+1 using CSR, which only considers
its nonzero entries. The operation process is shown by Al-
gorithm 1.

The computation of residual vector (12) and step-size (20)
can both avail Algorithm 1, which takes βt = wt and βt =

Figure 2: A finite horizon problem: Boyan chain example
with N + 1 states. The transition probability is marked on
the arch.

δt respectively. The complexity of Algorithm 1 is given in
the following lemma.

Lemma 2 (Complexity of Algorithm 1). The complexity of
algorithm 1 is O(lt+1).

When At+1 is sparse, we do not have to update it in the
manner of (10). First we define

{
xt+1 = At+1wt

yt = Atwt,

Obviously yt can be computed by Algorithm 1. The com-
putation of xt+1 is direct from yt. Multiplying both sides of
(10) with wt, we have

xt+1 = yt +
1
T
{φt [(γφt+1 − φt)′wt]− yt} . (21)

The weight update can now be specified as

wt+1 = wt + αt(xt+1 + bt+1). (22)

The details of MR using CSR are specified by Algorithm 2.
Let us examine the complexity of Algorithm 2.

Theorem 3 (Complexity of Algorithm 2). The per-time-step
complexity of MR using CSR is O(qK), where q is a small
positive real related to the sparsity of matrix A.

Proof. The steps computing yt and αt both use Algorithm
1. According to Lemma 2, their complexities are O(lt). The
computation of bt+1, xt+1 and wt+1 are all O(K).

Assume after t0 steps, no new nonzero entry of At+1

emerges. In the first t0 steps, the update of CSR have to
insert new entries into at, and shift the remaining entries
forward. Accordingly, the other two arrays in St

A should
also be updated. The total complexities of these operations
are O(lt). After t0 steps, we only have to update the values
of at, and do not need to update the other two arrays in St

A.
Thus the complexity of CSR update is still O(lt). Assume
there are l nonzero entries in A. Obviously lt converges to
l with probability one. As a widely accepted criterion, usu-
ally a sparse matrix has only l < qK nonzero entries, where
q is some small positive real. Therefore, the complexity of
Algorithm 2 is O(l) < O(qK).

5 Simulation
Boyan chain and the function approximation are shown in
Figure 2. Transition from N to N + 1 incurs a reward
−2; transition from N + 1 incurs 0; the other transitions
incur −3. The discount factor γ is set to 1. Under Boyan’s
linear function approximation, the feature of state 4i − 3
(i = 1, . . . , N/4 + 1) is set to the unit vector with a sin-
gle one in the ith row. The features of the other states are
the linear interpolation between these unit vectors. Thus we
need K = N/4 + 1 features. The kth component of w∗ is
−8(K − k), k = 1, . . . , K.

There is another version of iLSTD (Geramifard, Bowling,
& Sutton 2006). The version takes advantage of the sparsity
of ∆w. It is more computationally efficient than the ordi-
nary iLSTD discussed in Section 3: at each time step, only
m components in vector µ (defined in equation (15)) with
the largest magnitude are updated. Accordingly, the corre-
sponding m components of w have a priority to be updated.
This efficient version was also compared, which is denoted
as m−iLSTD for ease.

The step-size of iLSTD/m−iLSTD is scheduled as fol-
lows: c0 was chosen from the set {0.1, 0.01, 0.001, 0.0001},
and c1 was chosen from {100, 1000, 10000, 100000}. We
tried all the sixteen combinations of c0 and c1. The perfor-
mance of iLSTD/m−iLSTD in Figure 3 used the best one
of them, which selected c0 = 0.001 and c1 = 1000 by
experimental finding. For iLSTD, m−iLSTD and MR, A0

was set to −0.01I; w0 and b0 were set to [0.1, . . . , 0.1]′K×1.
For LSTD, Ã0 was set to −0.01I and b̃0 was set to
[0.1, . . . , 0.1]′K×1. All compared algorithms used λ = 0.
The priority number m was set to 1 in all figures presented.

In Figure 3, we plot the 2−norm modeling error of the
RM procedure (equation (10) and (11)). It is shown that the
RM estimations are becoming more accurate as more tra-
jectory data is experienced. We also plot the RMS errors
of LSTD, iLSTD, m−iLSTD and MR in Figure 3. All al-
gorithms used the same data set and all RMS errors were
averaged over 10 independent runs. An interesting observa-
tion is that the RM estimations are much more accurate than
the predictions made by any algorithm. This indicates that
the accuracy of learning is based on the trajectory data that
expresses the inherent model.

As shown in Figure 3, the prediction of iLSTD is more
accurate than m−iLSTD, because the latter only updates
the prioritized components of w, and neglects the experi-
ence corresponding to the left K − m components. The
RMS error of MR approaches that of LSTD much faster than
iLSTD/m−iLSTD. The reason may be that the step-size of
iLSTD cannot guarantee that the new residual error is al-
ways smaller than the old one. MR is also advantageous in
that it has no parameter to select by hand.

The computational efficiency of each algorithm was mea-
sured by its CPU time per time step. The running time with
a variety of problem sizes was tested on a Pentium(R) 4 PC
(Intel(R) CPU 3.00GHZ; RAM 1.00GB).

Figure 4 shows that LSTD is very efficient for small prob-
lem (e.g., K ≤ 26), because its matrix has small dimensions
and is easy to invert. However, the running time of LSTD

Figure 3: Modeling errors and RMS errors on Boyan chain
with 101 states (26 features). Both axes use Log scale.

grows much more quickly than the other algorithms as the
size of problem increases. TD is the most computationally
efficient. The running time of MR and 1−iLSTD occupies
in the middle of LSTD and TD. Although MR is a little
more complex than 1−iLSTD, it increases more slowly than
1−iLSTD with respect to the problem size. When the prob-
lem size increases to some scale, the difference becomes
fairly narrow.

CSR format enables MR to manipulate much smaller size
of data at each time step than LSTD. As shown by Figure
5, on Boyan chain with 801 states, LSTD has to manipulate
201 × 201 = 40401 entries of Ai at each time step. In
contrast, CSR needs only 800+800+202 = 1802 memory.
Thus MR manipulates only 1802 elements of St

A at each
time step. In fact, only the entries of array ai are updated
after a few trajectories, because no new nonzero entries of
Ai emerges, and arrays ci and di remain unchanged.

6 Discussion
MR algorithm avoids the need to tune parameters. As a big
concern, people wonder if any other assumption is intro-
duced by MR. Actually MR algorithm is developed on no
more assumption than previous algorithms. We are very in-
terested whether the step-size can perform well on complex
RL problems. Another interesting question is, are RL tasks
we encounter usually sparse? As an ongoing investigation,
we found that in cart-pole balancing tasks, matrix Ai is very
sparse. This may be a positive indication that CSR can be
used for these continuous control problems that are solved
by discretization.

7 Acknowledgement
We thank Li Lihong and one reviewer for pointing out that
the rule of step-size (20) minimizes the new residual error.
Li Lihong also helpfully discuss an initial version of this

Figure 4: Comparison of CPU time per time step. Each point
in the figure is averaged over one trajectory.

Figure 5: Comparison of the sizes of Ai and CSR on Boyan
chain with 801 states (201 features). An entry in Ai is
treated as 0 if its absolute value is smaller than 0.000001.

paper with the first author. We thank three anonymous re-
viewers for helping improve on many aspects of the paper.

References
Bertsekas, D. P., and Tsitsiklis, J. N. (1996) Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA.
Boyan, J. A. (1999) Least-squares temporal difference learning. In
Proceedings of the Sixteenth International Conference on Machine
Learning, pp. 49-56. Morgan Kaufmann, San Francisco, CA.
Boyan, J. A. (2002) Technical update: Least-Squares Temporal
Difference Learning. Machine Learning 49(2-3):233-246.
Bradtke, S., and Barto, A. G. (1996) Linear least-squares algo-
rithms for temporal difference learning. Machine Learning 22(1-
3):33-57.
Geramifard, A., Bowling, M., and Sutton, R. S. (2006) Incremen-
tal Least-Squares Temporal Difference Learning. In Twenty-First

National Conference on Artificial Intelligence (AAAI-06), pp. 356-
361.
Lagoudakis, M., and Parr, R. (2003) Least-squares policy iteration.
Journal of Machine Learning Research 4: 1107-1149.
Moore, A. W., and Atkeson, C. G. (1993) Prioritized Sweeping:
Reinforcement Learning with Less Data and Less Real Time. Ma-
chine Learning 13:103-130.
Nedić, A., and Bertsekas, D. P. (2003) Least-Squares Policy Eval-
uation Algorithms with Linear Function Approximation. Discrete
Event Systems: Theory & Applications 13:79-110.
Saad, Y. (2003) Iterative Methods for Sparse Linear Systems, 2nd
edition. SIAM, Philadelphia, PA, USA.
Sutton, R. S. (1988) Learning to Predict by the Methods of Tempo-
ral Differences. Machine Learning 3:9-44.
Sutton, R. S., and Barto, A. G. (1998) Reinforcement Learning: An
Introduction. Cambridge MA, MIT Press.
Tadić, V. (2001) On the Convergence of Temporal-Difference
Learning with Linear Function Approximation. Machine Learning
42(3):241-267.
Tsitsiklis, J. N., and Van Roy, B. (1997) An Analysis of Temporal-
Difference Learning with Function Approximation. IEEE Trans-
actions on Automatic Control 42:674-690.

