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Abstract

In this paper I discuss what, according to my long ex-
perience, every computer scientists should know from
logic. We concentrate on issues of modeling, inter-
pretability and levels of abstraction. We discuss how
the minimal toolbox of logic tools should look like for a
computer scientist who is involved in designing and an-
alyzing reliable systems. We shall conclude that many
classical topics dear to logicians are less important than
usually presented, and that less known ideas from logic
may be more useful for the working computer scientist.

1 Teaching Logic

The following text is not a scientific paper. It is really
a prose version of a set of slides in which I present my
ideas on the subject. I have presented a first version
of these slides at the LPAR’07 conference in Yerevan,
Armenia, in October 2007. I do hope that I will finally
turn these thoughts into a proper scholarly paper. In
these sketchy notes I mostly give references to mono-
graphs, and not the original papers.

The Students I Have in Mind

I want to examine what we should teach from logic to
our non-specialized undergraduate students. I mean,
what does every graduate of Computer Science have
to learn in/from logic? The current syllabus is often
justified more by the traditional narrative than by the
practitioner’s needs. The practitioner’s needs are de-
termined by what he needs to understand his own ac-
tivity in dealing with his computing environment. As
a computer/computing engineer he should be aware of
the inherent difference between consumer products and
life-critical hardware and software. The occasional fail-
ure of consumer goods is beneficial to the functioning
of the Fordistic consumer society in as it maintains the
consumption cycles needed for its functioning. The fail-
ure of life-critical products is disastrous for all the par-
ties involved. Life-critical products have to be properly
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specified, verified, tested and certified before they can be
released. The practitioner therefore needs a basic un-
derstanding of what it means to properly specify,test,
verify and possibly certify. a product.

Practically speaking,

• he should understand the meaning and implications
of modeling his environment as precise mathematical
objects and relations;

• he should understand and be able to distinguish in-
tended properties of this modeling and side-effects;

• he should be able to discern different level of abstrac-
tion;

• he should master the (non-formalized) language of
sets and second order logic which enables him to
speak about the modeled objects;

• he should understand what it means to prove prop-
erties of modeled objects and relations;

• but he should also understand the inherent limita-
tions of what can be achieved, and of his own activ-
ity.

2 Sets and the Logical Foundations of

Mathematics

Whether we like or not depends on our philosophical
position, if we at all have one, but it is a fact supported
by a large social consensus, that the language of sets
is the most used and most accepted way of modeling
mathematical objects. A very convincing discussion,
why sets are used that way, is given in (Blass & Gure-
vich 2008). We are used to model automata of all sorts
including Turing machines as tuples of sets, functions
and relations. We do the same when we discuss behav-
ior of hardware and software, when we prove properties
of modeled artefacts, and when we show that certain
combination of properties of such artefacts cannot be
achieved.

The emergence of the language of sets goes back to
the work of G. Cantor and G. Frege, who both felt
the need to put mathematics on new rigorous founda-
tions upon which the growing edifice of real and com-
plex analysis could be built. Cantor initiated the use



of sets for modeling natural, real and complex num-
bers and their functions, and Frege wanted to derive
the rules of set formation from logic. Frege’s program
intended to derive the foundations of mathematics from
logical principles. It derived set theory as the universal
data structure for modeling mathematical objects from
logic. The history of logic in the years between 1850 and
1950 is the history of successes and failures of Frege’s
program. This history forms the traditional narrative
along which we are used to teach logic. I will argue
that this narrative is misleading as far as the working
mathematician or computer scientist or engineer is con-
cerned.

Let us look at this traditional narrative the way I see
it. We start by paraphrasing the history of Logicism
from Frege to Gödel, and further to the re-evaluation
of Frege’s program.

Act I: Cantors Paradise
• First G. Cantor (1874 - 1884) created the Paradise of

Sets.

• Then G. Frege (1879) created the modern Logical
Formalisms, including the correct binding rules for
quantification, and

• set out to lay the Foundations of Mathematics
with his Die Grundgesetze der Arithmetik, Volume1
(1893), see (Burgess 2005)

• The book was not well received. Only G. Peano,
author of The principles of arithmetic, presented by a
new method (1889), (Kennedy 1973) wrote a positive
review of it.

Act II: Paradise lost
• On 16 June 1902, Bertrand Russell pointed out, with

great modesty, that the Russell paradox gives a con-
tradiction in Frege’s system of axioms.

• . . . and with Russel’s paradox started the crisis of the
Foundations of Mathematics,

• G. Cantor had sensed this, when he noticed trouble
with the ”set of all sets” and his notion of cardinality.

Let V be the set of all sets. Then its power set P (V )
is a subset of V . But Cantor proved that the car-
dinality of the power set P (A) of a set A is always
strictly bigger than the cardinality of A. On the other
hand the cardinality of a subset of A is at most the
cardinality of the set A, a contradiction.

Act III: Hilbert’s Program
D. Hilbert around 1920 designs a program to provide
a secure foundations for all mathematics. In particular
this should include1:

• Formalization of all mathematics: all mathematical
statements should be written in a precise formal lan-
guage, and manipulated according to well defined
rules.
1This subsection is a quote from Wikipedia. Its author

is unknown.

• Completeness: a proof that all true mathematical
statements can be proved in the formalism.

• Consistency: a proof that no contradiction can be
obtained in the formalism of mathematics. This con-
sistency proof should preferably use only ”finitistic”
reasoning about finite mathematical objects.

• Conservation: a proof that any result about ”real ob-
jects” obtained using reasoning about ”ideal objects”
(such as uncountable sets) can be proved without us-
ing ideal objects.

• Decidability: there should be an algorithm for decid-
ing the truth or falsity of any mathematical state-
ment.

Hilbert’s Logic Lectures
In 1928, D. Hilbert and W. Ackermann publish
Grundzüge der theoretischen Logik, (Hilbert & Acker-
mann 1928; 1949; 1950). Here are the points of interest
to us:

• The Logic in question is Second Order Logic.

• What we call First Order Logic, is called there the
restricted calculus.

• They prove soundness of the calculus, and ask the
question of completeness.

The book is soon translated into English, French and
Russian and remains the most widely used reference
for more than thirty years. K. Gödel, as a graduate
student, reads the book in 1928. The original book
contains several technical mistakes which are fixed in
subsequent editions. The first English edition (Hilbert
& Ackermann 1950) gives credit to A. Church and W.
Quine for pointing out some mistakes in the second Ger-
man edition.

The book states as the main problem of Logic its
axiomatization and proofs of the

• Independence of the axioms

• Consistency of the axioms

• Completeness of the axioms

• The decision problem of the conse-
quence relation

Act IV: Rise and Fall of Hilbert’s Program
Initial successes:

• Leopold Löwenheim (1915), Thoralf Skolem
(1920), Mojżesz Pressburger (1929), Alfred Tarski
(1930), Frank Plumpton Ramsey (1930), László
Kalmár (1939) and many others prove partial de-
cidability results for fragments of Logic, and for
Arithmetic, Algebra, Geometry.

• In 1929 Kurt Gödel proves the completeness of the
Hilbert-Ackermann axiomatization of the the re-
stricted (first order) calculus.



Final blows:

• 1931 K. Gödel proves that every recursive theory
which contains arithmetic is incomplete.

• 1931 K. Gödel proves that every recursive consis-
tent theory which contains arithmetic cannot prove
its own consistency.

• 1936 Alonzo Church and Alain Turing show that
already for the restricted calculus with free relation
variables the set of tautologies is not computable
(but is semi-computable). Hence, they gave a neg-
ative solution to the Decision Problem.

The most comprehensive account of solvable and un-
solvable cases of the Decision Problem can be found in
(Börger, Grädel, & Gurevich 1997).

Act V: Clarifications and Repairs

Out of the ashes rise the four classical sub-disciplines
of mathematical logic:

Set Theory arises from work by E. Zermelo, D. Mir-
imanoff, J. von Neumann, A. Fränkel, K. Gödel and
P. Bernays. Alternative approaches were developed
by, among others, W. Quine, W. Ackermann, and
J.L. Kelley and A.P. Morse, and more recently, by P.
Aczel.

Set theory, in contrast to using sets in mathematical
practice, is mostly concerned with settling questions
around the axiom of choice and cardinal arithmetic,
or in formulating alternatives, such as the axiom of
determinacy, and in clarifying their impact on ques-
tions in topology and analysis. Today, set theory is
a highly specialized branch of technical mathematics
with little impact on computer science.

Proof Theory arises from work by W. Ackermann, G.
Gentzen, J. Herbrand, D. Hilbert and P. Bernays.

It has developed into a full-fledged theory of proofs,
comprising the analysis of (transfinite) consistency
proofs in terms of ordinals and fast-growing func-
tions, program extraction from proofs, and resource
analysis related to provability. It also plays an im-
portant role in all aspects of automated reasoning, an
important branch of Artificial Intelligence.

Recursion Theory arises from work by E. Post, J.
Herbrand, K. Gödel, A. Church, A. Turing, H. Curry.
Recursion theory developed at one side into degree
theory, classifying non-computable functions accord-
ing to their different levels of complexity, at the other
side it developed into Computability Theory and has
become one of the pillars of Computer Science edu-
cation in its own right.

Model theory arises from work by T. Skolem, A.
Tarski, A. Robinson, R. Fräıssé and A. Mal’cev.

Two main directions evolve, classification theory, and
a more algebraic and geometric theory, linking model
theory with algebraic geometry and number theory.
Although finite model theory has its early origin,
it was through Automata Theory, Database Theory

and Complexity Theory that it evolved into its own
discipline with a legitimate place in advanced Com-
puter Science education.

. . . and for long this remained the classical divide of
Mathematical Logic.

J. Shoenfield’s monograph (Shoenfield 1967) is pos-
sibly the only monograph covering all aspects of Math-
ematical Logic up to the boundaries of research of his
time. Since then the four classical disciplines pursue
their own paths, and among the younger generations
of researchers it cannot be taken for granted that they
have studied the four disciplines in depth.

Act VI: 100 years later - Fixing Frege
If only G. Frege had not been so scared by B. Rus-
sel’s letter. C. Wright, P. Geach and H. Hodes sug-
gested, and G. Boolos proved (1987) that a modi-
fied Frege program actually is feasible, (Boolos 1998a;
1998c; 1998b). They noted that the famous contra-
diction stemmed from the axiom which states, roughly,
that the extension of any concept is a set. However, this
axiom is only used to derive an abstraction principle,
called Hume’s principle, which states, again roughly,
that two extensions have the same cardinality if and
only there is a bijection.

So we have for the modified Frege system:

Frege: The Peano Postulates can be deduced in dyadic
second order logic from Hume’s principle and suitable
definitions of the natural numbers (Frege’s Arith-
metic).

Boolos: Frege’s arithmetic is interpretable in second
order Peano Arithmetic.

Some (the Neo-Logicists) argue that this justifies a
revival of Logicism. But it also creates new problems.
A thorough discussion of the pros and cons of Neo-
Logicism can be found in J. Burgess (Burgess 2005). A
thorough discussion of abstraction principles similar to
Hume’s Principle can be found in K. Fine (Fine 2002).

That much for the ”big crisis”.

At least the set theory needed for the foundations of
Computer Science can be derived from logical princi-
ples.

3 The Foundations of Mathematics

and Computer Science

What Frege and Russel and Whitehead had in mind,
viz. to build the foundations of mathematics from
scratch, was done in a more intelligible (but still not
too user friendly) way by E. Landau in his Founda-
tions of Analysis first published in German in 1930,
and in English in 1951, with many reprints, the latest in
1999 with a German-English vocabulary by the Ameri-
can Mathematical Society, (Landau 1999). In this book



he explicitely constructs the real and complex numbers
from the standard model of Peano arithmetic. Lan-
dau’s style is very dry and concise, and the text was
written for mature mathematicians. A more pedagogi-
cal version of the same constructions can be found in S.
Feferman’s (Feferman 1964), which I also would love to
see reprinted. One can view such a foundation of Analy-
sis as a pragmatic version of Frege’s program. Roughly,
one proceeds as follows:

• One starts with a cumulative hierarchy of sets, based
on the empty set alone (or with urelements) and nat-
ural set construction principles which allow to con-
struct also infinite sets.

• Then one defines inductively the natural numbers
with a successor function, and the sets of finite words
over a (not necessarily) finite alphabet (a set), with
an append operation for each element of the alpha-
bet.

• One then proceeds with defining the number systems
N, Z, Q and their arithmetic operations inductively
and using quotient structures.

• Then one construct the reals R, using Dedekind cuts.

• In similar ways one constructs other structures, say,
groups, fields, topological spaces, Banach spaces, Lie
algebras, which are specified axiomatically.

• Existence of axiomatically defined objects had to be
established by an explicit sequence of set construction
steps within the cumulative hierarchy.

• Clearly, one can apply the same methods to model
objects of the computing world, such as automata,
formal languages, programs, data structures, etc.

One should adapt Landau’s way for modeling the basic
data structures of Computer Science. I have attempted
to do this in the course Sets and Logic for Computer
science, which we teach in the third semester in our
Computer Science undergraduate program.

Set Theory in Computer Science
Besides using set theory for modeling purposes, the
computer scientist uses only few ingredients of set the-
ory:

1. The Cantor-Bernstein Theorem to prove equicardi-
nality,

2. The fact that a countable union of countable sets is
countable,

3. The fact that the cardinality of the power set of a set
A is always bigger than that of A,

4. The relationship between the termination of pro-
cesses and well-orderings.

5. The Recursion Theorem.

6. Some Fixed-Point Theorems.

The first three of these go ultimately back to Cantor’s
original work and are very basic. The Recursion The-
orem and Fixed Point Theorems should be taught in a
more advanced course.

Recursion Theory vs Computation Theory
Recursion Theory got its name for a good reason: The
computable functions over the natural numbers were
defined recursively, and early Recursion Theory con-
sisted in studying the strength of various proposed re-
cursion schemes. Recursion schemes can be replaced by
register machines. Computability Theory studies usu-
ally the computable relations and functions over sets
of words. The three approaches are inter-translatable,
but they are not the same. It is a pity that teaching all
these complementary notions of computability is not
always part of the Computer Science curriculum. Be
that as it may, Computation Theory has emancipated
itself from Logic and in Computer Science the two are
often taught independently. A good exception is the
monograph (Papadimitriou 1994).

Proof Theory
Proof theory evolved around the question what type
of consistency proofs are at all possible. As a spin-off
the field of deduction-based automated reasoning and
automated theorem proving came into being. Proof
theory is also used in the foundations of programming
languages, where it generated a rich literature of deep
insights into the nature of programming. Some basic
principles of automated reasoning do belong into a be-
ginner’s course on Artificial Intelligence, and some ba-
sic facts about functional programming do belong into
a basic course on Programming Languages. However,
only little of this rich material is suitable for the un-
dergraduate student I have in mind. A comprehensive
survey of Proof Theory is (Buss 1998).

Model Theory
The main tools of classical model theory almost all de-
rive from the compactness theorem and variations of the
model existence theorem. Using these tools one proves
preservation theorems, the omitting types theorem and
develops a general understanding of the possible struc-
ture of models of first order theories. I have described
how to use these tools in the Computer Science context,
in database theory, the foundations of Logic Program-
ming, and the specification of data types, (Makowsky
1984; 1992). It turned out, however, that the Compact-
ness Theorem is mostly suitable when dealing with infi-
nite structures, and the most prominent application of
the Compactness Theorem in Computing is Herbrand’s
Theorem with its ramifications in Automated Reason-
ing and Logic Programming. The most important tools
from Model Theory in algorithmic applications are the
Ehrenfeucht-Fräıssé games and the Feferman-Vaught
Theorem and its variations. The former is omnipresent
in Finite Model Theory, cf. (Ebbinghaus & Flum 1995;
Libkin 2004) and the a survey of the uses of the latter
can be found in (Makowsky 2004). For other failures of
classical theorems of First Order Logic when restricted
to the finite case, cf. (Gurevich 1988).

One should add here that the combination of the
Compactness Theorem with the Ehrenfeucht-Fräıssé



games leads to Lindström’s characterization of First Or-
der Logic. The attempts to develop an Abstract Model
Theory are documented in the monumental (Barwise &
Feferman 1985). This line of reasoning had a consid-
erable impact on Finite Model Theory and Descriptive
Complexity in providing techniques for defining logics
which capture complexity classes. For the advanced
student applications of Finite Model Theory to Com-
puter Science are surveyed in (Grädel et al. 2007).

The classical textbooks in Logic
The available undergraduate texts of Logic for Com-
puter Science follow too often the narrative of the em
Rise and Fall of Hilbert’s Program. They emphasize
the classical Hilbertian topics.

• Logic is needed to resolve the paradoxes of set theory.

• First Order Logic is THE LOGIC due to its com-
pleteness theorem.

• The main theorems of logic are the
Completeness Theorem and the Compactness Theo-
rem

• The tautologies of First Order Logic are not recur-
sive.

• Arithmetic Truth is not recursive enumerable.

• One cannot prove CONSISTENCY within rich
enough systems.

This is NOT what a Practitioner
of Computing Sciences NEEDS !

Other texts are often written with a very special
agenda reflecting the author’s research interest or his
particular tastes. Finally, there are texts which are re-
ally written with the undergraduate Computer Science
student in mind. But then they are often either writ-
ten specifically with programmers in mind, and do not
deal with the data modeling issues2. Logic is first of
all language in which we express ourselves before we
prove statements. We first have to formulate a spec-
ification, a database query, an intermediate assertion,
a loop invariant, before we prove them to hold, to be
valid, or for two of them to be equivalent or not. Logic
deals with definability issues as much as with prov-
ability issues, something which in the Hilbertian tradi-
tion is easily forgotten. An introductory text in Logic
for Computer Science should choose its topics in way,
that the student meets the topics taught again in later
courses. When we teach Linear Algebra in the first year
of a mathematics curriculum, most of the topics reap-
pear in vector analysis, differential equations, physic,
statistics etc. We have to build our syllabus of logic
keeping this in mind.

2The recent book by R. Bornat(Bornat 2005) is a lovely
introduction to Logic for programmers.

4 So what Does a Practitioner of

Computing Sciences Need?

We distinguish between knowledge of theoretical orien-
tation and practical knowledge, which consists of tools
and skills. In our case this means:

Theoretical orientation:

• awareness that our domain of discourse is an
idealized world of artefacts which models fairly ac-
curately the artefacts which allow us to run and
interact with computing machinery.

• awareness of the different levels of abstractions.

• awareness that in this world of artefacts there are
a priori limitations. Not everything is realizable,
computable, etc.

Practical knowledge:

• tools which allow us to model new artefacts, when-
ever they arise;

• tools which allow us to prove properties of the mod-
eled artefacts.

The student needs a carefully adapted blend of the
practical Frege program, with the knowledge of its lim-
itations. He needs both proficiency and performance in
his practical knowledge.

5 Lessons from 150 years of History

I have spent so much space reviewing what I consider
noteworthy in the evolution of the Logicists program
because I do want to draw some lessons from it which
are not foundational but practical. I would like the B.Sc.
graduates of Computer Science to be familiar with the
following:

Lesson 1. Modeling the world

Our scientific language: Natural Language en-
hanced by precise use of boolean operations,
quantification and the use of naive language of sets.

Our universal data structure: A cumulative world
of sets.

Modeling the world: We model all artefacts of our
computing world by constructed objects in the world
of sets.

Modeling involves side effects:
Modeled artefact have properties not intended.

Digression: the ordered pair: Ordered pairs could
be introduced via an abstraction principle:
(x, y) = (x′, y′) if and only if x = x′ and y = y′.
But usually the ordered pair is modeled directly:
N. Wiener: (x, y)W := {{{x}, ∅}, {{y}}},
K. Kuratowski: (x, y)K = {{x}, {x, y}},
Simplified : (x, y)S = {x, {x, y}}.

Now one has to verify that (x, y) = (x′, y′) if
and only if x = x′ and y = y′. All the proposed
versions do satisfy this, but the proofs differ. The
simplified version requires the axiom of foundation.



Kuratowski’s version is the accepted definition
today. But all definitions have side effects, e.g., x
is an element of {x, {x, y}} but not of {{x}, {x, y}}.
Proving properties of objects which depend on the
use of ordered pairs should not use these side effects,
but only the defining property.

The distinction between specified properties
and side effects should be taught early on!

Fixing levels of abstraction: Introducing struc-
tures, and fixing which sets are not further to be
analyzed.

A graph is a pair < V, E >.
A finite automaton is a tuple < S, Σ, R, I, T >.

Like in the foundations of Analysis, as practiced by R.
Dedekind, E. Landau and N. Bourbaki, we need the pre-
cise language mix of normalized natural language aug-
mented by the language of sets to model the idealized
artefacts of computer science. To model the artefacts
we also need basic tools.

Artefacts:
strings, concatenation, natural numbers,
graphs, relational structures stacks, arrays;
circuits, Turing machines, register machines;
specification and programming languages,

Tools: Inductive definitions, proofs by induction;
enumerations,
proving countability and uncountability;
well-orderings (for termination)

Is this not ”too denotational” ? ....
... our friends may ask.

Yes, this approach does map everything into sets. But
“truth” does not necessarily presuppose a world of sets.
Truth in the sense of Frege’s world is defined by the
laws (introduction and elimination rules) of logic and of
the Fregean constructs. It does leave your foundational
options open ...

Lesson 2. Modeling Computability and its
limitations (when modeled)

We have already said that computability is usually
taught in a separate course, be it together with formal
languages or with an introduction to basic complexity
theory. Nevertheless, our student should understand
that computability is modeled over different domains,
computing operations, resource restrictions.

Natural numbers and recursion:
The original definition of the set of recursive func-
tions.

Natural numbers and register machines:
Close to early programming languages.

Turing machines and words: Close to assembly
languages.

Other models: Logic programs, Lambda calculus,
cellular automata, quantum computing

Showing their equivalence involves modeling also

• translation between the domains;

• translations between programs (interpreters and
compilers).

Here I want to stress The different basic structures in-
volved, and their bi-interpretability. In terms of knowl-
edge of orientation and practical knowledge we have:

Orientation:
Not everything is computable.
Not everything is feasibly computable.

Tools:
Using the non-solvability of the Halting Problem to
prove non-computability.

Using different types of reducibilities (and simula-
tions).

I have observed that even my colleagues are sometimes
imprecise: The Church Turing Hypothesis is often care-
lessly invoked. There is also a trend to say computable
when actually one means feasibly computable, where
feasibly computable may mean computable in determin-
istic polynomial time, sometimes computable in poly-
nomial time with randomized algorithms.

It is also important to distinguish between complexity
classes defined as equivalence classes of problems under
certain reductions, and sometimes defined as classes of
decision (counting, approximation) problems solvable
in a specific computational model.

Using polynomial time Turing reductions, the class
[SAT ]T of problems reducible to SAT is of the first
type, NP is of the second type, and NP = [SAT ]T is
a theorem. In the case of counting problems [#SAT ]T
is of the first type, #P is of the second type, and
#P = [#SAT ]T is not true. Using reductions in
First Order Logic we still have [SAT ]FOL = NP , but
not every problem X , which is NP -complete with
respect to polynomial time Turing reductions satisfies
[X ]FOL = [SAT ]FOL.

It is important to insist that slogans
are replaced by precise definitions.

Lesson 3. Modeling Syntax and Semantics

We look at Propositional, First Order, Second Order
Logic, or any other logic of assertions. Again we model
them in our framework of sets.

Syntax:

The syntax is an inductively defined set of words,
the well formed expressions.



Semantics: Structures are interpretations of the basic
non-logical symbols. Assignments are interpretations
of the variables. The meaning function associates
with structures, assignments, and formulas a truth
value.

What is the meaning of an assertion ?

Without free variables: The meaning of an asser-
tion is a truth value.

But this is misleading!

With free variables: The meaning of an assertion is
the set of interpretations of its free variables. In the
case of first order variables only it is a relation.

As in Classical Geometry one speaks of the geomet-
rical lieu of all points satisfying an equation, we can
speak of the logical lieu defined by a formula. In
modern data base parlance this is called a query.

We define usually logical validity via truth values. It
would be preferable to define validity and logical conse-
quence directly for formulas with free variables.

Our student is more likely to meet in the sequel of
courses formulas with free variables that just formulas
without.

Do we need the Completeness Theorem?

For the practical knowledge we need:

• The semantic notion of logical consequence.

• Enough basic logical equivalences to to prove the
Prenex Normal Form Theorem (PNF).

• Introduction and elimination rules for quantifiers (via
constants).

• A game theoretic interpretation of formulas in PNF.

For the knowledge of orientation we might state
(but not prove) the Completeness Theorem for our re-
dundant set of manipulation rules.

Here are the arguments for and against proving the
Completeness Theorem in the first course of Logic.

The classical argument pro:

• Completeness and its corollary, Compactness is at the
heart of logic.

My arguments against:

• None of these are part of the practical knowledge we
aim at.

• The proof of the Completeness Theorem is a waste of
time at the expense of teaching more the important
skills of understanding the manipulation and mean-
ing of formulas.

• First Order Logic is not privileged in our context.
We deal very often with finite structures, where the
Completeness Theorem is not true.

• Second Order Logic anyhow is the natural logic we
work in, and not taking that seriously confuses the
student.

We should instead concentrate on
understanding quantification

As tools we need to

• Read, write and understand the meaning of First Or-
der and Second Order formulas.

• Understand the relationship between projection of re-
lations and first order quantification.

• Understand that Relational Calculus and First Order
Logic are really the same (i.e., bi-interpretable).

• Introduce immediately after the proof of the Prenex
Normal Form Theorem the Ehrenfeucht-Fräıssé
Game, and proceed to show the easy direction of the
Ehrenfeucht-Fräıssé Theorem, i.e., if a formula (say
in Prenex Normal Form) of quantifier rank k is true
in one but not in another structure, then we can de-
rive from the formula a winning strategy for player I
(the spoiler) for the game with k moves.

• Play with the game interpretation of quantifiers to
analyze the amount of quantification needed to ex-
press, say ”there exists at least n elements x such
that φ(x)”.

• One can even point out that (easy direction) of
Ehrenfeucht-Fräıssé Theorem holds also for Second
Order Logic.

Lesson 4. Limitations of formalisms:
Definability

Before we find time to prove the Completeness Theo-
rem, I would like the students to understand the differ-
ence between First Order (FO) and Second Order (SO)
Logic.

• Look at the statement

”There are an equal number of x
with P (x) and with Q(x)”

where P, Q are unary predicate symbols.

This is expressible in SO but not in FO, and we can
even show the proof having the Ehrenfeucht-Fräıssé
Games available.

• We can even be daring, and show that connected-
ness on finite graphs is SO-definable, but not FO-
definable.

• In the natural numbers N, multiplication is SO-
definable, but not FO-definable, using addition only.



However, multiplications is FO-definable using addi-
tion and squaring.

The negative result we cannot prove in an under-
graduate course, as we need the decidability of FO
Pressburger Arithmetic. But we can explain it.

Lesson 5. Interpretability and Reducibility
Again before we use our time prove the Completeness
Theorem I would like the students to understand what
it means that a structure is FO-interpretable in another
structure. Let look at the case of the natural numbers
N and the integers Z with their arithmetic operations.

The integers Z with their arithmetic are FO-
interpretable inside the natural numbers N with
their arithmetic.

To get the interpretation we define a new structure from
N, called a transduction T (N), and which will be iso-
morphic to Z, as follows.

• The new universe consists of equivalence classes of
pairs of natural numbers such that (x, y) ∼ (x′, y′) iff
x + y′ = x′ + y.

• The new equality is this equivalence.

• The new addition is the old addition on representa-
tives.

• Same for multiplication.

T is a semantic map. Its syntactic counterpart is the
interpretation S : Formulas → Formulas, defined as
follows:

For any SO-formula φ we let S(φ) be the result of
substituting the new definitions of addition and multi-
plication and equality for the corresponding symbols.
In the exact definition one has to be careful with the
renaming of free variables.

S and T are intimately related:

Z = T (N) |= φ iff N |= S(φ)

which is the Fundamental Property of Transductions
and Interpretations.

In the same way we can see that

• The Cartesian product is interpretable in the disjoint
union.

• Many graph transformations are given as transduc-
tions.

• All implementations of one data structure in another
are of this form.

• Transductions and interpretations are everywhere

6 The Fundamental Properties of SO

and FO

In teaching our students to think and speak Second
Order Logic, we should teach

• that isomorphic structures satisfy the same SO sen-
tences;

• the Fundamental Property of Transductions and In-
terpretations;

• the Prenex Normal Form Theorem and its visualiza-
tion as a two person game.

and we should practice thinking in SO as the natural
language of specifying properties of modeled artefacts.

The Fundamental Properties of FO

Besides the properties of SO we have
The Ehrenfeucht-Fräıssé Theorem:

Two structures can be distinguished by a sentences
of quantifier depth k iff Player I (the spoiler) can
force a win in the EF-game of length k.

or, equivalently

Two structures cannot be distinguished by a sen-
tences of quantifier depth k iff Player II (the du-
plicator) can force a win in the EF-game of length
k.

We say that two structures are k-isomorphic if Player
II can force a win in the EF-game of length k.

Furthermore:

k-isomorphism is preserved under the formation of
disjoint unions of structures.

Modified versions also hold for Monadic Second Order
Logic, but not for SO.

Combining EF-Games and Interpretations

Combining games and interpretations gives a very pow-
erful tool to compute the meaning function of a FO
formula in a complex structure by reducing this com-
putation to simpler structures.

If G is obtained from graphs H1, H2 by applying dis-
joint unions, Cartesian products, and first order defin-
able transductions T1, T2, say

G = T1(H1 × T2(H2))

then the truth of the formulas of quantifier rank k in G
is uniquely and effectively determined by the the truth
of the formulas of quantifier rank k which hold in H1

and H2.
This is the Feferman-Vaught Theorem. It allows us

to compute the meaning function for FO-formulas (or
MSO-formulas) of composite structures by reducing its
computation to the meaning functions of the formulas
on the components. I have surveyed how to use the
Feferman-Vaught Theorem in Computer Science in my
paper in (Makowsky 2004).

7 My Logic Tool Box

So we finally come to the description of the Logic Tool
Box I would like to give to our students. Tools to do
what, you will ask. Tools to think rigorously in order to



approach the disciplines of programming and informa-
tion processing, tools to model accurately new artefacts,
as they occur, tools to grasp the scope of abstraction
and modularity. Our students are not logicians. Logic
per se is not their main interest. Logic is for Computer
Science what Hygienics is to Medicine. They should
learn rigorous informal reasoning before they learn
to model this kind of reasoning as formalized proof se-
quences. Needless to say that each tool comes with a
required skill how to use it.

My Logic Tool Box contains:

Modeling tools:

• Basic set construction principles;
• Inductive definitions;

• Proofs by induction;

• Basic cardinality arguments.

Logic tools:

• Propositional Logic and its axiomatization.

• Second Order Logic as the main formalism to ex-
press properties of the modeled artefacts.

• The semantic notion of logical consequence and va-
lidity.

• Validity over finite structures.
• Quantifier manipulation rules.

• Skolem functions.

• The Fundamental Property of Transductions and
Interpretations.

• First Order Logic as an amenable fragment of Sec-
ond Order Logic.

• The Ehrenfeucht-Fräıssé Theorem and its refine-
ments.

• The Feferman-Vaught Theorem and its variations.

We said before that the Completeness Theorem for First
Order Logic holds only, if we define validity over all
First Order Structures. For Second Order Logic one
would have to explain the difference between Henkin’s
notion of validity and standard second order quantifica-
tion. Just stating the Completeness Theorem for First
Order Logic misleads the student, and explaining its
true subtleties may be beyond the undergraduate level.

Where these tools work
I have chosen the Logic Tool Box with a view on the
courses our student has to take during his undergrad-
uate studies. Ideally, the course I have in mind, Sets
and Logic for Computer Science, should be taught
in the second or third semester. The student should
have studied already Discrete Mathematics and Al-
gorithms and Data Structures, so the teacher can
rely on the intuition of the students, and the examples
developed in these courses. The course should play the
same role as the course N

¯
umber Systems used to play

when it was still customary to teach it, cf. (Feferman
1964),

The modeling skills taught in our course should help
him in the following (usually compulsory) courses:

• Automata and Formal Languages

• Introduction to Computability

• Database Systems

• Graph Algorithms

• Principles of Programming Languages

• Computer Architecture

• Introduction to Artificial Intelligence

The more specialized topics of Logic should be
taught in advanced courses: A course Advanced Top-
ics in Logic could have three parts, covering the
Completeness and Incompleteness Theorem, Ordinals
and Termination, and Temporal and Modal Logic.
Other topics belong there where they are rally used,
in the courses on Verification, Automated Theo-
rem Proving, Principles of Logic Programming,
Database Theory, Functional Programming and
so forth.

8 What was omitted?

I have not included in my discussion what is called in
the standard classification Non-classical Logics. These
logics can also be modeled using set-theoretic tools,
and indeed they are. When they find applications to
Computer Science, as Temporal Logic (Manna & Pnueli
1995) or the Logic of Knowledge, (Fagin et al. 1995),
they also find there way into more advanced courses.

I have not included in my discussion two classical con-
cerns of the debate around the Foundations of Mathe-
matics and Computer Science: Epistemology and de-
grees of constructivism. A delightful and insightful
presentation and discussion of these matters from a
contemporary point of view can be found in (Shapiro
2000). Although I tend to be a Platonist, viewing
mathematical concepts as real, I am aware of the dif-
ficulties inherent in this position, cf. (Maddy 1990;
1998). I am also aware of the social and cultural mech-
anisms at work which strongly influence how science
evolves, cf. (Wilder 1981). However, I strongly object
to the arguments which take the social and cultural
mechanisms at work as a justification for the erroneous
claim that scientific truth is purely social and cultural.

From a more pragmatic point of view I tend to be
a Formalist, viewing the observable part of the mathe-
matical and logical enterprise as happening on (virtual)
paper written with (virtual) pencils. Concerning the
degrees of constructivism I subscribe to, I only want
to remark that often non-constructive is confused with
lack of detail. The axiom of choice is an example of
lack of detail. I assume that the choice function ex-
ist and I want to proceed from there, filling in the de-
tails (implementation) later, or leaving them to others.
Software engineering always proceeds like this and is
not considered non-constructive even by the most ex-
treme constructivists. Using a cardinality argument to
prove the existence of, say, transcendental numbers, ex-
pander graphs or other combinatorial objects, is consid-



ered non-constructive, but can be explained in the same
way.

Our students, however, should rather follow the ad-
vise of the Rabbinic Sages, who admonish us not to
study Kabbala (Jewish Mysticism) before the mature
age of forty years and before serious exposure to the
more down-to-earth matters of Talmud and Torah. Our
students should view the Philosophy of Mathematics
and of Computer Science as something to be left for
later. Children do not question linguistic principles be-
fore they learn their first language. Scientists should
not question Science before they master the craft.
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