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Abstract

The paper studies the relationship between logic programs
with the stable model semantics and difference logic recently
considered in the Satisfiability Modulo Theories framework.
Characterizations of stable models in terms of level rankings
are developed building on simple linear integer constraints
allowed in difference logic. Based on a characterization with
level rankings a translation is devised which maps a normal
program to a difference logic formula capturing stable mod-
els of the program as satisfying valuations of the resulting
formula. The translation makes it possible to use a solver for
difference logic to compute stable models of logic programs.

1 Introduction
Logic programs with the stable model semantics have
emerged as an attractive knowledge representation for-
malism and approach to solving search problems using
the answer set programming (ASP) paradigm (Marek &
Truszczyński 1999; Lifschitz 1999). The basic idea is
that a problem is solved by devising a logic program such
that the stable models of the program provide the answers
to the problem, i.e., solving the problem is reduced to a
stable model computation task (Lifschitz 1999; Marek &
Truszczyński 1999; Niemelä 1999; Eiter, Gottlob, & Man-
nila 1997; Buccafurri, Leone, & Rullo 1997).

Classical propositional logic has been used in a simi-
lar way to solve search problems in areas like planning
and computed aided verification (Kautz & Selman 1992;
1996; Clarke et al. 2001). There is a close relationship
between stable models of (propositional) logic programs
and classical propositional logic. For example, interest-
ing translations from programs to propositional formulas
have been developed starting from Clark’s work on program
completion, early work by Ben-Eliyahu and Dechter (Ben-
Eliyahu & Dechter 1994), and more recently on incremen-
tal translations based on loop formulas (Lin & Zhao 2002;
Lierler & Maratea 2004). The work by Janhunen (Jan-
hunen 2004) seems to provide the most compact transla-
tion of normal programs to propositional clauses where sta-
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ble models correspond directly to classical models of the
translation. The size of the translation is O(m log n) where
m is the length of the program and n is the number of
atoms in the program. Such translations can be used to
implement stable model computation (Lin & Zhao 2002;
Lierler & Maratea 2004) using software tools for solving
propositional satisfiability (SAT) problems which have ad-
vanced very rapidly in recent years (see http://www.
satcompetition.org/).

In recent years extensions of the SAT problem have been
studied quite extensively, in particular, in the SMT (Satisfi-
ability Modulo Theories) framework (Bozzano et al. 2005;
Nieuwenhuis, Oliveras, & Tinelli 2006). In this paper we
consider an extension of SAT called difference logic where
propositional logic is extended by allowing simple linear
constraints of the form xi + k ≥ xj where xi, xj are integer
variables and k is an integer constant. Difference logic is
interesting because such linear constraints are useful in vari-
ous applications and because efficient implementation tech-
niques are available in the SMT framework (Nieuwenhuis &
Oliveras 2005; Cotton & Maler 2006).

This paper studies the relationships between logic pro-
grams with the stable model semantics and difference logic
with the aim to pave the way for a more extensive integra-
tion of SMT and other constraint satisfaction technique and
ASP methods, in line with work started, e.g., in (Baselice,
Bonatti, & Gelfond 2005; Mellarkod & Gelfond 2007).

The rest of the paper is organized as follows. In Sec-
tion 2 we review basic concepts of normal logic programs
and the stable model semantics. Section 3 introduces differ-
ence logic and Section 4 develops new characterizations of
stable models using linear constraints allowed in difference
logic. Section 5 then presents a translation of logic programs
to difference logic such that stable models of a program cor-
respond to satisfying valuations of its translation.

2 Stable Models
We consider normal propositional logic programs with the
stable model semantics (Gelfond & Lifschitz 1988). Such
programs consist of normal rules of the form

a← b1, . . . , bm, not c1, . . . , not cn. (1)

where each a, bi, cj is a ground atom. Given a rule r of
the form (1) we denote the head a by H(r), the set of body



literals {b1, . . . , bm, not c1, . . . , not cn} by B(r), the set of
positive body atoms {b1, . . . , bm} by B+(r) and the set of
negative body atoms {c1, . . . , cn} by B−(r).

We write At(P ) for the set of atoms that appear in a pro-
gram P . Models of a program are subsets of At(P ). A set
of atoms M is said to satisfy an atom a if a ∈ M and a
negative literal not a if a 6∈ M (denoted by M |= a and
M |= not a, respectively). A set of atoms M satisfies a set
of literals L (M |= L) if it satisfies every literal in L. A
rule r of the form (1) is satisfied by M if M |= H(r) holds
whenever M |= B(r) holds. A program P is satisfied by
M (M is a model of P ) if each rule in P is satisfied by M
(denoted M |= P ).

Stable models of a program are sets of atoms which sat-
isfy all the rules of the program and are justified by the rules.
This is captured using the concept of a reduct. For a program
P and a set of atoms M , the reduct PM is defined by

PM = {H(r)← B+(r) | r ∈ P,B−(r) ∩M = ∅}.

The reduct PM does not contain any negative literals and,
hence, has a unique subset minimal set of atoms satisfying
it.

Definition 1 A set of atoms M is a stable model of a pro-
gram P iff M is the unique minimal set of atoms satisfying
PM .

We also employ a related concept of a supported
model (Apt, Blair, & Walker 1988). A set of atoms M is
a supported model of a program P iff M |= P and for every
atom a ∈ M there is a rule r ∈ P such that H(r) = a and
M |= B(r).

We define for any program P and I ⊆ At(P ), the set
of support rules PI = {r ∈ P | I |= B(r)}. Any stable
model M ⊆ At(P ) of a normal logic program P is also
a supported model of P but the converse does not hold in
general (Marek & Subrahmanian 1992).

3 Difference Logic
In this paper we study the relationship of normal logic pro-
grams and difference logic as studied, e.g., in (Nieuwenhuis
& Oliveras 2005). Let P = {p1, p2, . . . , pn} be a set of
propositional atoms and X = {x1, x2, . . . , xm} a set of in-
teger variables. The set of atomic formulas of difference
logic consists of propositions in P and linear constraints of
the form xi+k ≥ xj where k is an arbitrary integer constant
and xi, xj ∈ X . The set of difference logic formulasF is the
smallest set that contains the atomic formulas and is closed
under negation (¬) and conjunction (∧). The Boolean con-
nectives ∨,→,↔ can be defined in the usual way in terms
of ¬ and ∧. For example,

(x1 + 2 ≥ x2)↔ (p1 → ¬(x2 + 2 ≥ x1))

is a formula in difference logic.
A valuation τ consists of a pair of functions τP : P →

{⊥,>} and τX : X → Z where Z is the set of integers. A
valuation is extended to all formulas in F by defining

τ(xi + k ≥ xj) = > iff τX (xi) + k ≥ τX (xj)

and applying the usual rules for the Boolean connectives.
A formula φ ∈ F is satisfied by a valuation τ iff τ(φ) =
>. For example, given a valuation τ where τX (x1) =
τX (x2) = 1, τP(p1) = ⊥,

τ((x1 + 2 ≥ x2)↔ (p1 → ¬(x2 + 2 ≥ x1))) = >.

As difference logic contains classical propositional logic
as a special case, it is easy to see that given a formula φ ∈ F ,
the satisfiability problem (deciding whether there is a sat-
isfying valuation for φ) is NP-complete. See, for exam-
ple, (Nieuwenhuis & Oliveras 2005; Cotton & Maler 2006)
for SMT based techniques for solving the satisfiability prob-
lem.

4 New Characterization of Stable Models
In this section we develop a new characterization of stable
models where the idea is to use simple linear constraints of
the form xi + k ≥ xj allowed in difference logic.

First, we define the notion of a level ranking of a model
and show how stable models can be captured in terms of
such rankings.

Definition 2 Let M be a set of atoms and P a normal pro-
gram. A function lr : M → N is a level ranking of M for
P iff for each a ∈ M , there is a rule r ∈ PM such that
H(r) = a and for every b ∈ B+(r), lr(a)− 1 ≥ lr(b).

It turns out that finding a level ranking for a model implies
the stability of the model.

Theorem 3 Let M be a model of a finite normal program
P . Then M is a stable model of P iff there is a level ranking
of M for P .

Proof. Let M be a model of P .
(⇒) Suppose M is a stable model of P . We can construct

a level ranking lr of M for P using the TP M (·) operator
which is defined for a program P as TP (I) = {H(r) | r ∈
P, I |= B(r)}. For this operator define

TP↑0 = ∅

and for i = 0, 1, 2, . . .

TP↑(i + 1) = TP (TP↑i).

Now we assign lr(a) = i iff a ∈ TP M ↑i but a 6∈ TP M ↑
(i− 1). As M is a stable model of P , we know that M =
TP M ↑ω and for each a ∈ M there is a unique i such that
a ∈ TP M↑i but a 6∈ TP M↑(i− 1). Hence, for a ∈ M there
is a rule r of the form (1) such that a ← b1, . . . , bm ∈ PM

and TP ↑(i− 1) |= {b1, . . . , bm} but then r ∈ PM and for
every bj , lr(bj) ≤ i−1 and, hence, lr(a)−1 = i−1 ≥ lr(bj)
which implies that lr is a level ranking.

(⇐) Suppose there is a level ranking lr of M for P . We
show that then M is the minimal model of PM which im-
plies that M is a stable model of P . As M is a model of
P , it is a model of PM . Assume that there is M ′ ⊂ M
such that M ′ |= PM . Then there is an atom a ∈ M −M ′

with the smallest level ranking lr(a) for which there is a
rule r in P such that H(r) = a and M |= B(r). Now
a ← b1, . . . , bm ∈ PM and for every bi, lr(bi) < lr(a).



Thus, bi ∈ M ′ and M ′ |= {b1, . . . , bm} but M ′ 6|= a.
This implies that M ′ is not a model of PM , a contradic-
tion. Hence, M is the minimal model of PM which implies
that M is a stable model of P . �

A similar characterization of stable models for ground
programs has been discussed in (Elkan 1990) and general-
ized to programs with variables in (Fages 1994) based on
well-founded partial orders.

It should be noticed that for a stable model there can be
multiple level rankings.
Example 1 Consider a program

p1 ← .
p2 ← p1.
p3 ← p1.
p3 ← p4.
p4 ← p2.
p4 ← p3.

Now a function satisfying lr1(pi) = i is a level ranking
of the model M = {p1, p2, . . . , p4} but so is lr2(p1) =
1, lr2(p2) = lr2(p3) = 2, lr2(p4) = 3.

We can achieve a tighter connection between rankings and
stable models using the notion of a strong level ranking.
Definition 4 Let M be a set of atoms and P a normal pro-
gram. A function lr : M → N is a strong level ranking of M
for P iff for each a ∈M the following conditions hold:

1. There is a rule r ∈ PM such that H(r) = a and for every
b ∈ B+(r), lr(a)− 1 ≥ lr(b).

2. If there is a rule r ∈ PM such that H(r) = a and
B+(r) = ∅, then lr(a) = 1.

3. For every rule r ∈ PM such that H(r) = a there is b ∈
B+(r) with lr(b) + 1 ≥ lr(a).
Consider again Example 1 where lr1 is not a strong level

ranking of M for P because of the rule p3 ← p1, for which
lr1(p1) + 1 = 2 < lr1(p3) = 3 but where lr2 is a strong
level ranking.

It turns out the each stable model has a strong level rank-
ing. In fact, the construction in the proof of Theorem 3 pro-
duces a strong level ranking of a stable model.
Theorem 5 Let M be a model of a normal program P .
Then M is a stable model of P iff there is a strong level
ranking of M for P .

Moreover, strong level rankings are unique.
Proposition 6 Let M be a model of a finite normal program
P . If there is a strong level ranking of M for P , then the
ranking is unique.

It turns out that strong level rankings are closely related
to level numberings introduced in (Janhunen 2004).
Lemma 7 Let M be a model of a normal program P . Given
a function lr : M → N define for each rule in r ∈ PM , a
number

lr(r) = max{lr(b) | b ∈ B+(r)}+ 1. (2)

If lr is a strong level ranking of M for P , then for each atom
a ∈M it holds that

lr(a) = min{lr(r)|r ∈ PM ,H(r) = a}.

Theorem 8 Every strong level ranking when extended to
rules as in (2) is a level numbering as defined in (Janhunen
2004) and every level numbering as defined in (Janhunen
2004) when restricted to atoms is a strong level ranking.

In (Janhunen 2004) level numberings are used as the basis
of a compact mapping of logic programs to classical propo-
sitional formulas in such a way that classical models corre-
spond directly to stable models of the original program. The
result above shows that strong level rankings can be used in
a similar way but less integer variables (and hence counters)
are needed as counters for rules can be eliminated.

5 Translating Logic Programs to Difference
Logic

Using the characterization in Theorem 3 we develop a map-
ping from logic programs to difference logic such that stable
models of a program are captured by the valuations of the re-
sulting difference logic formula.

The mapping Tdiff(P ) of a logic program P to difference
logic consists of two parts: the standard Clark’s completion
CC(P ) (Clark 1978) of P and ranking constraints R(P ).

The completion CC(P ) consists of the set of following
formulas for each atom a ∈ At(P ):

• if a does not appear as a head of any rule in P , formula
¬a is included.

• Otherwise formula

a↔ bd1
a ∨ · · · ∨ bdk

a

is included for an atom a which has k ≥ 1 rules of the
form (1) and, furthermore, for each such rule (1) a formula

bd1
a ↔ b1 ∧ · · · ∧ bm ∧ ¬c1 ∧ · · · ∧ ¬cn

is added where bdi
as are new atoms.

The ranking constraints R(P ) consist of a set of formulas

a→
k∨

i=1

(bdi
a ∧ (xa − 1 ≥ xb1) ∧ · · · ∧ (xa − 1 ≥ xbm))

for each atom a which has k ≥ 1 rules of the form (1) in P
where xbs are integer variables associated to each atom b in
the program.

The translation Tdiff(P ) of a program P to difference
logic is the conjunction of the formulas in CC(P ) ∪ R(P ).

It turns out that the valuations of Tdiff(P ) correspond to
stable models of P .

Theorem 9 (i) If a set of atoms M is a stable model of a
finite normal program P , then there is a satisfying valuation
τ of Tdiff(P ) such that M = {a ∈ At(P ) | τ(a) = >}.

(ii) If there is a satisfying valuation τ of Tdiff(P ), then
M = {a ∈ At(P ) | τ(a) = >} is a stable model of P .

Proof sketch. (i) If M is a stable model of P , then it is a
supported model of P and, hence, gives a satisfying valua-
tion τP for the completion CC(P ). By Theorem 3 there is
a level ranking lr of M . If we set for every atom a ∈ M ,
τX (xa) = lr(a), then the resulting valuation τ satisfies also



R(P ) and, hence, Tdiff(P ) such that M = {a ∈ At(P ) |
τ(a) = >}.

(ii) If there is a satisfying valuation τ of Tdiff(P ), then
M = {a ∈ At(P ) | τ(a) = >} is a supported model of
P as τ satisfies CC(P ). Mapping every atom a ∈ M with
lr(a) = τX (xa) gives a level ranking of M for P because τ
also satisfies R(P ). Then by Theorem 3 M is a stable model
of P . �

Example 2 Consider a program P :

p← q, not r.
q ← p, not r.

The completion CC(P ) is

¬r
p↔ bd1

p

bd1
p ↔ q ∧ ¬r

q ↔ bd1
q

bd1
q ↔ p ∧ ¬r

and the ranking constraints R(P ) are

p→ (bd1
p ∧ (xp − 1 ≥ xq))

q → (bd1
q ∧ (xq − 1 ≥ xp)).

The translation Tdiff(P ) has a satisfying valuation τ
where τP(p) = τ(q) = ⊥ and, hence, P has a stable
model {}. Notice that there is no satisfying valuation τ
where τP(p) = τ(q) = > because then in that valuation
also τ(xp − 1 ≥ xq) = τ(xq − 1 ≥ xp) = > should hold
which is impossible.

Theorem 9 implies that by employing the translation we
can compute stable models using a solver for difference
logic.

6 Conclusions
The paper studies the relationship between logic programs
with the stable model semantics and difference logic. We
devise a characterization of stable models using level rank-
ings and strong level rankings which are based on simple
linear integer constraints of the form xi +k ≥ xj allowed in
difference logic. Based of the characterization using level
rankings we develop a translation of normal programs to
difference logic which captures stable models of a program
as satisfying valuations of the resulting difference logic for-
mula.

There are several interesting topics of further research.
Strong level rankings could be used as a basis for mapping
logic programs to propositional formulas in a similar way as
proposed in (Janhunen 2004) but perhaps using less coun-
ters as rule counters could be eliminated. The translation
to difference logic opens up the possibility of using differ-
ence logic solvers to compute stable models and experimen-
tal work is needed to evaluate the potential of this approach.
The translation makes it possible to embed rule based rea-
soning directly into SMT systems that support difference
logic. This could be a promising way to integrate ASP and
SMT techniques.
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