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Abstract

Preferences occurr in many everyday tasks. Whether we look
for a house, a car, a computer, a digital camera, or a vaca-
tion package, we usually state our own preferences and we
expect to find the item of our dreams. It is therefore natural
that modelling and solving sets of preferences is a central is-
sue in AI, if we want to understand human intelligence and
use computing devices to replicate some of functions of the
human brain.
This paper will discuss different kinds of preferences, will
describe and compare some of the AI formalisms to model
preferences, and will hint at existing preference solvers.Un-
certainty will also be considered, in the form of a possibly
incomplete set of preferences, because of privacy issues or
missing data. We will also discuss multi-agent settings where
possibly incomplete preferences need to be aggregated, and
will present results related to both normative and computa-
tional properties of such systems.
While the results on single-agent preference solving are
mostly related to AI sub-areas such as constraint program-
ming and knowledge representation, those on multi-agent
preference aggregation are multi-disciplinary, since prefer-
ence aggregation and its properties have been extensively
studied also in in decision theory, economy, and political sci-
ences.

1 Preference formalisms in AI
Constraints are requirements that should be met. For exam-
ple, when choosing a camera, we may be interested only in
those with a telephoto lens. On the other hand, preferences
model the fact that some situations are more desirable than
others. When problems are over-constrained, as they often
are, we can use preferences to choose which constraints are
not satisfied.

Preferences can be quantitative or qualitative (e.g., ”I like
skiing very much” versus ”I like swimming more than ski-
ing”). Preferences can also be conditional (e.g., ”If the main
dish is fish, I prefer white wine to red wine”) or bipolar (e.g.,
”I like swimming very much and I slightly dislike running”).

Preferences and constraints may also co-exist. For exam-
ple, in a product (such as a car) configuration problem, there
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may be production constraints (for example, a limited num-
ber of convertible cars can be built each month), marketing
preferences (for example, that it would be better to sell the
standard paint types), as well as user preferences of various
kind (for example, that if it is a sport car, she prefers red).

Because constraints and preferences often occur together
in real life, representing and reasoning about preferences
is an area of increasing interest within Artificial Intelli-
gence. Unfortunately, there is no single formalism which
allows the different kinds of preferences to be specified ef-
ficiently and reasoned with effectively. For example, soft
constraints (Bistarelli, Montanari, & Rossi 1997) are most
suited for reasoning about constraints and quantitative pref-
erences, while CP-nets (Boutilieret al. 2004) are most
suited for representing qualitative and possibly conditional
preferences.

In the following two subsections, we will describe these
two formalisms, that present very different advantages and
drawbacks.

1.1 Soft constraints
Soft constraints (Bistarelli, Montanari, & Rossi 1997;
Meseguer, Rossi, & Schiex 2006) model quantitative prefer-
ences by generalizing the traditional formalism of hard con-
straints (Rossi, Beek, & Walsh 2006). In a soft constraint,
each assignment to the variables of a constraint is annotated
with a level of its desirability, and the desirability of a com-
plete assignment is computed by a combination operator ap-
plied to the local preference values. By choosing a specific
combination operator and an ordered set of levels of desir-
ability, we can select a specific class of soft constraints.

For example, in fuzzy constraints (Dubois, Fargier, &
Prade 1993), preferences are between 0 and 1 (with 1 better
than 0), and min is the combination operator. In other words,
fuzzy constraints employ a very pessimistic approach, in
which only the worst event is taken into account to evalu-
ate a whole scenario.

Weighted CSPs instead have preferences over the inte-
gers, with higher integers denoting a lower preference, and
with sum as the combination operator. This setting is what
is usually used in cost-based scenarios, where the goal is to
minimize the sum of the costs.

Classical constraints (that is, hard requirements) can be
seen as soft constraints where there are only two levels of



preference (true and false), where true is better than false,
and where the combination operator is logical and. Thus a
scenario is evaluated positively only when all its constraints
are satisfied, otherwise it is rejected.

Given a set of soft constraints, an ordering is induced over
the assignments of the variables of the problem, which can
be partial or total, and can also have ties.

Given two solutions of a soft constraint problem, check-
ing whether one is preferable to the other one is easy: we
compute the preference values of the two solutions and com-
pare them in the preference order. However, finding an
optimal solution for a soft constraint problem is a combi-
natorially difficult problem. Many search techniques have
been developed to solve specific classes of soft constraints,
like fuzzy or weighted. However, all have an exponential
worst case complexity. Systematic approaches like back-
tracking search and constraint propagation, can be adapted
to soft constraints. For example, backtracking search be-
comes branch and bound where the bounds are given by the
preference levels in the constraints. Constraint propagation,
which is very successful in pruning parts of the search tree in
constraint solving, can also be generalised to certain classes
of soft constraints.

1.2 CP-nets
CP-nets (Boutilieret al. 2004) (Conditional Preference net-
works) are a graphical model for compactly representing
conditional and qualitative preference relations. They ex-
ploit conditional preferential independence by structuring a
user’s possibly complex preference ordering with the ceteris
paribus assumption. CP-nets are sets of conditional ceteris
paribus preference statements (cp-statements). For instance,
the statement ”I prefer red wine to white wine if meat is
served” asserts that, given two meals that differ only in the
kind of wine served and both containing meat, the meal with
a red wine is preferable to the meal with a white wine.

CP-nets bear some similarity to Bayesian networks, as
both utilize directed acyclic graphs where each node stands
for a domain variable, and assume a set of features with fi-
nite, discrete domains (these play the same role as variables
in soft constraints). Given a CP-net, an ordering is induced
over the set of assignments of its features. This ordering is,
in the most general case, a preorder (that is, reflexive and
transitive).

The Achille’s heel of CP-nets and other sophisticated
qualitative preference models is the complexity of reason-
ing with them. Given an acyclic CP-net, finding an optimal
assignment to its features can be done in linear time. How-
ever, for cyclic CP-nets, it becomes NP-hard. Even worse,
comparing two outcomes is NP-hard, even when the CP-net
is acyclic.

1.3 Comparing their expressive power
We could say that a formalism B is at least as expressive
than a formalism A iff from a problem expressed using A it
is possible to build in polynomial time a problem expressed
using B such that the optimal solutions are the same. If we
apply this to the comparison of some classes of soft con-
straints, we see for example that fuzzy CSPs and weighted

CSPs are at least as expressive as classical constraints. If
instead we use it compare CP-nets and soft constraints, we
see that classical constraints are at least as expressive asCP-
nets. In fact, it is possible to show that, given any CP-net, we
can obtain in polynomial time a set of classical constraints
whose solutions are the optimal outcomes of the CP-net. On
the contrary, there are some classical constraint problemsfor
which it is not possible to find in polynomial time a CP-net
with the same set of optimals.

However, we could be more fine-grained in the compari-
son, and say that a formalism B is at least as expressive than
a formalism A iff from a problem expressed using A it is
possible to build in polynomial time a problem expressed
using B such that the orderings over solutions are the same.
Here not only we must maintain the set of optimals, but also
the rest of the ordering over the solutions. In this case, CP-
nets and soft constraints are incomparable.

Summarizing, CP-nets and soft constraints have comple-
mentary advantages and drawbacks. CP-nets allow one to
represent conditional and qualitative preferences, but dom-
inance testing is expensive. On the other hand, soft con-
straints allow to represent both hard constraints and quanti-
tative preferences, and have a cheap dominance testing.

2 Uncertainty
Traditionally, tasks such as scheduling, planning, and re-
source allocation have been tackled using several tech-
niques, among which constraint reasoning is one of the win-
ning ones: the task is represented by a set of variables, their
domains, and a set of constraints, and a solution of the prob-
lem is an assignment to all the variables in their domains
such that all constraints are satisfied. Preferences or objec-
tive functions have been used to extend such scenario and
allow for the modelling of constraint optimization, rather
than satisfaction, problems. However, what is common to
all these approaches is that the data (variables, domains,
constraints) is completely known before the solving process
starts.

On the contrary, the increasing use of web services and
in general of multi-agent applications demands for the for-
malization and handling of data that is only partially known
when the solving process works, and that can be added later,
for example via elicitation. In many web applications, data
may come from different sources, which may provide their
piece of information at different times. Also, in multi-agent
settings, data provided by some agents may be voluntarily
hidden due to privacy reasons, and only released if needed
to find a solution to the problem.

2.1 Missing preferences
These issues can be considered in the context of constraint
optimization problems. In particular, we can consider prob-
lems with soft constraints, where variables, domains, and
constraint topology is given at the beginning, while the pref-
erences can be partially specified and possibly added during
the solving process.

There are several application domains where such setting
is useful. One regards the fact that quantitative preferences,



as needed in soft constraints, may be difficult and tedius to
provide for a user. Another one concerns multi-agent set-
tings, where agents agree on the structures of the problem
by they may provide their preferences on different parts of
the problem at different times. Finally, some preferences can
be initially hidden because of privacy reasons.

Although some of the preferences can be missing, it could
still be feasible to find a solution which is optimal indepen-
dently on what the missing preferences will be. If not, we
can ask the user for help and we start again from the new
problem with some added preferences.

More precisely, we consider two notions of optimal so-
lution: possibly optimalsolutions are assignments to all the
variables that are optimal inat least one waycurrently un-
specified preferences can be revealed, whilenecessarily op-
timal solutions are assignments to all the variables that are
optimal in all ways in which currently unspecified prefer-
ences can be revealed.

Given an incomplete soft constraint problem (ISCSP), its
set of possibly optimal solutions is never empty, while the
set of necessarily optimal solutions can be empty. Of course
what we would like to find is a necessarily optimal solution,
to be on the safe side: such solutions are optimal regardless
of how the missing preferences would be specified. How-
ever, since such set may be empty, in this case there are two
choices: either to be satisfied with a possibly optimal solu-
tion, or to ask users to provide some of the missing prefer-
ences and try to find, if any, a necessarily optimal solution of
the new ISCSP. If we follow this second approach, we can
repeat the process until the current ISCSP has at least one
necessarily optimal solution.

To achieve this, we can first check whether the given prob-
lem has a necessarily optimal solution (by just solving the
completion of the problem where all unspecified preferences
are replaced by the worst preference). If not, we can find
the most promising among the possibly optimal solutions
(where the promise is measured by its preference level), and
asks the user to reveal the missing preferences related to
such a solution. This second step is then repeated until the
current problem has a necessarily optimal solution.

Experimental results with various versions of this basic
algorithm on randomly generated problems show that a nec-
essarily optimal solution can be found by eliciting a very
small percentage of the missing preferences (Gelainet al.
2007).

2.2 Uncontrollable variables
Besides the scenarios where some preference values are
missing, there are other ways in which uncertainty can oc-
cur in a problem with preferences. One of the most commnly
considered is the one in which some variables are uncontrol-
lable, that is, their value cannot be chosen by the agent. This
can model situations where there are parts of the problem
that are under the control of some other agent, or of Nature.

A typical example of an uncontrollable variable, in the
context of satellite scheduling, or weather prediction, is
a variable representing the time when clouds will disap-
pear. A more general setting in which uncertainty occurs are
scheduling problems, which constrain the order of execution

of various activities, and where the durations of some activi-
ties are uncertain. In this case the goal is to define a schedule
which is the most robust with respect to uncertainty.

While it may happen that no information is available on
the uncontrollable variables, usually there is some informa-
tion, possibly related to historic data. This usually provides
a probability or possibility distribution over the values in the
domain of the uncontrollable variable.

Possibilities (Zadeh 1978) are useful to model imprecise
probabilities, since they provide an upper and a lower bound
to probabilities. They have been shown to be useful in data
analysis, structural learning, diagnosis, belief revision, ar-
gumentation, and case-base reasoning. Moreover, experi-
mental results in cognitive psychology suggest that there are
situations where people reason about uncertainty using the
rules of possibility theory, rather than those of probability
theory.

We model a real-life problem via a set of variables (some
controllable and some not controllable) with finite domains
and a set of soft constraints among subsets of the variables.
In particular, we considerfuzzy preferences, that are useful
in many applications, like for example the spatial applica-
tions and the medical ones, where it is required to have a
pessimistic approach.

Fuzzy constraints allow for an easy integration with pos-
sibilities, since both possibilities and fuzzy preferences are
values between 0 and 1 associated to events, and express the
level of plausibility that the event will occur, or its prefer-
ence.

For the solutions of this kind of problems, we can define
the notion of preference and robustness, as well as several
desirable properties that such notions should respect, also in
relation to the solution preference ordering.

To find the optimal solutions of such problems, we can
eliminate the uncontrollable variables (and all the con-
straints connecting them) and add new fuzzy constraints in
the controllable part. Such new constraints contain, in a dif-
ferent form, some of the information that was present in the
removed part. While the old constraints are used to com-
pute the preference of a solution, these additional constraints
are used to compute its robustness (Pini, Rossi, & Venable
2005).

Several semantics that use the notions of preference and
robustness can be defined to order the solutions. For all
such semantics, we can check whether the desired properties
hold. The semantics that take into account both preference
and robustness are a finer way to evaluate the solutions of
these problems, since they allow us to distinguish between
highly preferred solutions which are not robust, and robust
but not preferred solutions. It is also possible to see that they
respect all the desired properties. For example, they guaran-
tee that, if there are two solutions with the same robustness
(resp., the same preference), then the ordering is given by
their preference (resp., robustness).

3 Multi-agent preference aggregation
In many situations, we need to represent and reason about
the simultaneous preferences of several agents, and to ag-
gregate such preferences. To deal with these situations, let



us assume that we have a number of agents which repre-
sent their preferences via CP-nets. To aggregate the agents’
preferences, we can query each CP-net in turn and collect
together the results. We can see this as each agent “voting”
whether an outcome dominates another. We can thus ob-
tain different semantics by collecting these votes together in
different ways (Rossi, Venable, & Walsh 2004).

For example, to obtain a Pareto-like semantics, we can
say that an outcome A is better than another one, B, iff every
agent says that A is better than B or that they are indifferent.
An alternative criterion, that we may call majority, is thatA
is better than B iff a majority of the agents who are not in-
different vote in favor. A weaker criterion, that we may call
Max, is that more agents vote in favor than against or for
incomparability. Sometimes it is reasonable to assume that
the agents are ordered in importance. If the first agent or-
ders two outcomes then this is reflected in the final outcome.
However, if they are indifferent between two outcomes, we
consult the second agent, and so on. We say that A is lexico-
graphically better than B iff there exists some distinguished
agent such that all agents higher in the order are indifferent
between A and B, and the distinguished agent votes for A.

3.1 Some normative properties: fairness and
non-manipulability

Having cast our preference aggregation semantics in terms
of voting, it is appropriate to ask if there is a way to aggre-
gate the preferences that is ”reasonable” according to some
criteria. This is question asked by Arrow, who answered
it with his famous impossibility theorem (Kelly 1978). In
short, Arrow’s theorem states that no voting system with two
or more agents and which totally orders three or more can-
didates can be fair. More precisely, no voting system can be
independent to irrelevant alternatives, unanimous, and non-
dictatorial.

Observe that our context is different from Arrow’ one,
since the agents’ preference orderings are not necessarily
total orders, but can present incomparability between pairs
of candidates. In fact, CP nets do not necessarily provide
a total order. The same would hold if the agents used soft
constraints rather than CP-nets.

The following properties of preference aggregation are re-
lated to fairness:

• Unanimity: if all agents agree that A is preferable to B,
then the resulting order must agree as well.

• Independence to irrelevant alternatives: the ordering be-
tween A and B in the result depends only on the relation
between A and B given by the agents.

• Absence of a dictator: Here we may have three definitions
of dictator:

– Strong dictator: an agent such that, no matter what the
other agents say, its ordering is the resulting ordering;

– Dictator: an agent such that, no matter what the others
say, if it prefers A to B, then the resulting ordering must
say the same;

– Weak dictator: an agent such that, no matter what the

others say, if it prefers A to B, then the resulting order-
ing cannot prefer B to A.

A preference aggregation system is strongly fair, fair or
weakly fair if its is unanimous, independent to irrelevant al-
ternatives, and does not have a strong dictator, dictator or
weak dictator respectively. Arrow’s impossibility theorem
shows that, if preference aggregation is on total orders, and
a preference aggregation system is unanimous, independent
to irrelevant alternatives and there are at least two votersand
three outcomes, then there must be at least one dictator.

In our partially ordered context, it is possible to be fair.
In fact, for example, the Pareto semantics is fair. Since fair-
ness implies strong fairness, preference aggregation can be
strongly fair as well. Actually strong fairness is a very weak
property to demand. Even voting rules which appears very
unfair may not have a strong dictator. For example, the Lex
preference aggregation semantics is not fair, but it is strongly
fair.

However, as in Arrow’s result for totally ordered prefer-
ences, it is impossible to be weakly fair (Piniet al. 2005).
Thus the possible presence of incomparable candidates, both
in the agents’ preference ordering and in the social ordering,
is not helpful in this respect.

Fairness is just one of the desirable properties for prefer-
ence aggregations (Arrow, Sen, & Suzumura 2002). Other
interesting properties are related to the non-manipulability
of a preference aggregation system: if an agent can vote
tactically and reach its goal, then the system is manipula-
ble. Results for totally ordered preferences show that non-
manipulability implies the existence of a dictator (Gibbard
1973). Unfortunately, this continues to hold also for par-
tially ordered preferences (Rossiet al. 2006).

3.2 Uncertainty and computational properties
Some parts of the agents’ preference ordering may be miss-
ing. Thus, a pair of outcomes can be ordered, incomparable,
in a tie, or the relationship between them may be unspeci-
fied.

Notice that incomparability and incompleteness represent
very different concepts. Outcomes may be incomparable
because the agent does not wish very dissimilar outcomes
to be compared. For example, we might not want to com-
pare a biography with a novel as the criteria along which
we judge them are just too different. Outcomes can also be
incomparable because the agent has multiple criteria to op-
timize. For example, we might not wish to compare a faster
but more expensive laptop with a slower and cheaper one.
Incompleteness, on the other hand, represents simply an ab-
sence of knowledge about the relationship between certain
pairs of outcomes. Incompleteness arises naturally when we
have not fully elicited an agent’s preferences or when agents
have privacy concerns which prevent them revealing their
complete preference ordering.

We now must aggregate preferences taking into account
the incompleteness of the agents’ preference orderings. We
can do this by considering all possible ways in which the in-
complete preference orders can be consistently completed.In
each possible completion, preference aggregation may give



different optimal elements (orwinners). This leads to the
idea of thepossible winners(those outcomes which are win-
ners in at least one possible completion) and thenecessary
winners (those outcomes which are winners in all possi-
ble completions)Possible and necessary winners are useful
in many scenarios including preference elicitation. In fact,
elicitation is over when the set of possible winners coincides
with that of the necessary winners. In addition, preference
elicitation can focus just on the incompleteness concerning
those outcomes which are possible and necessary winners.
We can ignore completely all other outcomes.

Computing the set of possible and necessary winners is
in general a difficult problem. However, there are sufficient
conditions that assure tractability (Piniet al. 2007). Such
conditions concern properties of the preference aggregation
function, such as monotonicity and independence to irrele-
vant alternatives (Arrow, Sen, & Suzumura 2002), which are
desirable and natural properties to require.

Some of the impossibility results cited above for nor-
mative properties of voting rules can be partially circum-
vented via the use of computational complexity results. For
example, while non-manipulability is impossible for non-
dictatorial voting rules, it may be computationally hard to
manipulate a rule. A rule which is manipulable by hard to
manipulate can still be considered reasonable to be used.
Thus, while computational hardness is usually bad, it can
indeed be useful in this respect.

4 Conclusions
Preferences are of various kinds and occur frequently in real-
life problems. There are many preference modelling formal-
ism, each of which succeeds in modelling some aspects of
preferences while negletting others.

From a constraint perspective, preferences can be seen as
a way to model a form of uncertainty about the statements of
the problem. Other forms of uncertainty can involve missing
preferential data, as well as uncontrollable variables.

In multi-agent settings, preferences have to be aggregated.
Both normative and computational properties of preference
aggregation are essential to provide a good multi-agent pref-
erence reasoning scenario. In fact, impossibility resultson
normative properties can sometimes be partially circum-
vented by means of computational complexity results.

The ideal scenario would be one where a single formalism
would be able to accomodate for several different kinds of
preferences and uncertainty. This would make life easier for
a user and would allow for a more systematic study of the
properties of a certain scenario.

We believe that Artificial Intelligence and Mathematics
can do a lot if they work together towards this goal. AI can
provide vision and motivation, together with modelling and
complexity developments, while Mathematics can provide
the formal machinery, especially for uncertainty and multi-
agent preference aggregation.
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